Traditional Comm笔记【6】:阵列信号处理及MATLAB实现(第2版)阅读随笔(一)

Chapter1 绪论

(1). 阵列信号处理的目的:

通过对阵列接收到的信号进行处理,增强有用信号,抑制无用的干扰和噪声,并提取有用的信号特征及信号所包含的信息。

(2). 阵列信号处理研究的主要问题包括:
  • 波束成形技术——使阵列天线方向图的主瓣指向所需的方向,将干扰置为0。
  • 空间谱估计——对空间信号波达方向的分布进行超分辨率估计。
  • 信号源定位——确定阵列到信源的仰角、方位角,甚至频率、时延和距离等。
  • 信源分离——确定各个信源发射的信号波形。各个信源从不同方向到达阵列,这一事实使得这些信号波形得以分离,即使它们在时域和频域是叠加的。
(3). 空间谱估计方法:

D o A DoA DoA 估计的基本问题是确定同时处在空间某一区域内多个感兴趣的信号的空间位置(各个信号到达阵列参考阵元的方向角,简称波达方向)。波束形成实质上也是一个波达方向估计问题,只不过它们都是非参数化的波达方向估计器。这些估计的分辨率取决于阵列长度。阵列长度确定后,其分辨率也确定了,成为瑞利限。超瑞利限的方法成为超分辨率方法。最早的超分辨率DoA估计方法是著名的 M U S I C MUSIC MUSIC 方法和 E S P R I T ESPRIT ESPRIT 方法,它们同属特征结构的子空间方法。

子空间方法建立在这样一个基本观察之上:若传感器个数比信源个数多,则阵列数据的信号分量一定位于一个低秩的子空间;在一定条件下,这个子空间将唯一确定信号的波达方向,并且可以使用数值稳定的奇异值分解精确地确定波达方向

Chapter2 阵列信号处理基础

(1). 特征值与特征向量:

A ∈ C ,   e ∈ C n A\in \mathbb{C},\ e\in \mathbb{C^n} AC, eCn ,若标量 λ \lambda λ 和非零向量 e ⃗ \vec{e} e 满足方程:
A e ⃗ = λ e ⃗ A\vec{e}=\lambda\vec{e} Ae =λe
则称 λ \lambda λ 是矩阵 A A A 的特征值, e ⃗ \vec{e} e λ \lambda λ 对应的特征向量。特征值和特征向量总是承兑出现,称 ( λ ,   e ⃗ ) (\lambda,\ \vec{e}) (λ, e )为矩阵 A A A 的特征对,特征值可能为 0 0 0,但特征向量一定非零

(2). 信源和噪声模型:

窄带信号:多信号带宽远小于其中心频率,则该信号称为窄带信号,即:
W B / f 0 < 1 / 10 W_B/f_0<1/10 WB/f0<1/10
其中, W B W_B WB 为信号带宽, f 0 f_0 f0为中心频率。通常将正弦信号和余弦信号统称为正弦型信号,正弦型信号是典型的窄带信号。
s ( t ) = a ( t ) e j [ ω 0 t + θ ( t ) ] s(t)=a(t)e^{j[\omega_0 t+\theta(t)]} s(t)=a(t)ej[ω0t+θ(t)]
式中, a ( t ) a(t) a(t) 为慢变幅度调制函数(或称实包络), θ ( t ) \theta(t) θ(t) 为慢变香味调制函数, ω = 2 π f 0 \omega=2\pi f_0 ω=2πf0 为载频。一般情况下, a ( t ) a(t) a(t) θ ( t ) \theta(t) θ(t) 包含了全部的有用信息。

(3). 噪声模型:

若阵元接收到的噪声为平稳零均值高斯暴燥声,方差为 σ 2 \sigma^2 σ2 。各阵元间的噪声互不相关,且与目标源不相关。这样,噪声向量 n ( t ) n(t) n(t) 的二阶矩满足:
E { n ( t 1 ) ⋅ n H ( t 2 ) } = σ 2 ⋅ I ⋅ δ t 1 ,   t 2 E { n ( t 1 ) ⋅ n T ( t 2 ) } = 0 E\{n(t_1)\cdot n^H(t_2)\}=\sigma^2\cdot I\cdot \delta_{t_1,\ t_2}\\ E\{n(t_1)\cdot n^T(t_2)\}=0 E{n(t1)nH(t2)}=σ2Iδt1, t2E{n(t1)nT(t2)}=0

(4). 阵列天线的统计模型:
①. 前提及假设:
  • 关于接收天线阵的假设:接收阵列由位于空间已知坐标处的无源阵元按一定的形式排列而成。假设阵元的接收特性仅与其位置有关,而与其尺寸无关(认为是一个点),并且阵元都是全向阵元,增益均相等,相互之间的互耦忽略不计。阵元在接收信号时将产生噪声,假设其为加性高斯白噪声,各阵元上的噪声相互统计独立,且噪声与信号是统计独立的。
  • 关于信号空间源的假设:假设空间信号的传播介质是均匀且各向同性的,这时空间信号在介质中将按直线传播;同时又假设阵列处于空间信号辅助的远场中,所以空间源信号到达阵列时可被看成一束平行的平面波,空间源信号到达阵列各阵元在时间上的不同时延,可由阵列的几何结构和空间波的来向来决定。空间波的来向在三维空间中常用仰角 θ \theta θ 和方位角 ϕ \phi ϕ 来表征。

此外,在建立阵列信号模型时,还常常要区分空间源信号是窄带信号还是宽带信号。所谓窄带信号是指相对于信号(复信号)的载频而言,信号包络的带宽很窄(包络是慢变的)。因此,在同一时刻该类信号对阵列各阵元的不同影响仅仅在于因其到达各阵元的波程不同儿导致的相位差异(信号包络在各阵元上的差异可忽略,称为窄带信号)。

②. 阵列的基本概念:
  • 阵列流形:是阵列导向向量/方向向量/阵列响应向量的集合。阵列流形包含了阵列几何结构、阵元模式、阵元间的耦合、频率等影响。改变空间角 θ \theta θ ,使方向向量 a ( θ ) a(\theta) a(θ) M M M 维空间内扫描,所形成的曲面称为阵列流形
  • 方向向量:设在空间中有 M M M 个阵元组成阵列,将阵元从 1 1 1 M M M 编号,并以阵元 1 1 1 (也可选择其它阵元)作为基准或参考点。阵列信号总是变换到基带再进行处理,因此可将阵列信号用向量形式表示为:
    S ( t ) ≜ [ S 1 ( t ) , S 2 ( t ) , . . . , S M ( t ) ] = S ( t ) [ e − j r 1 T k , e − j r 1 T k , . . . , e − j r 1 T k ] T S(t)\triangleq[S_1(t),S_2(t),...,S_M(t)]=S(t)[e^{-jr_1^Tk},e^{-jr_1^Tk},...,e^{-jr_1^Tk}]^T S(t)[S1(t),S2(t),...,SM(t)]=S(t)[ejr1Tk,ejr1Tk,...,ejr1Tk]T
    上式被称为方向向量,因为当波长和阵列的几何结构确定时,该向量只与到达波的空间角矢量 θ \theta θ 有关。方向矢量记作 a ( θ ) a(\theta) a(θ) ,它与基准点的位置无关。
③. 天线阵模型:

用矩阵描述,即使在最一般化的情况下,阵列信号模型可简练地表示为:
x ( t ) = A ( Θ ) S ( t ) + n ( t ) x(t)=A(\Theta)S(t)+n(t) x(t)=A(Θ)S(t)+n(t)
很显然 A ( Θ ) A(\Theta) A(Θ) 与阵列地形状、信号源地来向有关,而一般在实际应用中,天线阵的形状一旦固定就不会改变了。所以,矩阵 A ( Θ ) A(\Theta) A(Θ) 中任何列总是和某个空间源信号的来向紧密联系的。

④. 波束宽度:
  • 波束宽度与天线孔径成反比。
  • 对于某些阵列( e . g . e.g. e.g. 线阵),天线的波束宽度与波束指向有关系。
  • 波束宽度越窄,阵列的指向性越好,也就说明阵列分辨空间信号的能力越强。
⑤.分辨率:

在阵列测向中,某方向上对信源的分辨率与在该方向附近阵列方向向量的变化率直接相关。在方向向量变化较快的方向附近,随信源角度变化,阵列快排数据变化也较大,分辨率也较高。

对于均匀线阵( U L A ULA ULA),分辨率为 D ( θ ) D(\theta) D(θ)
D ( θ ) ∝ c o s θ D(\theta)\varpropto cos \theta D(θ)cosθ
说明信号在 0 ° 0^\degree 0° 方向分辨率最高,而在 6 0 ° 60^\degree 60° 方向分辨率已降了一半,所以一般线阵的测向范围为 − 6 0 ° ∼ 6 0 ° -60^\degree \thicksim 60^\degree 60°60°

(5). 阵列协方差矩阵的特征分解:

在实际处理中,我们通常得到的数据是在有限时间范围内的有限次快拍数。在这段时间内,假定空间源信号的方向不发生变化,并且空间源信号的包络虽然随时间变化,但通常认为它是一个平稳随机过程,其统计特性不随时间变化,这样就可以定义阵列输出信号 x ( t ) x(t) x(t) 的协方差矩阵为
R = E { [ x ( t ) − m x ( t ) ] [ x ( t ) − m x ( t ) ] H } R=E\{[x(t)-m_x(t)][x(t)-m_x(t)]^H\} R=E{[x(t)mx(t)][x(t)mx(t)]H}
其中, m x ( t ) = E [ x ( t ) ] m_x(t)=E[x(t)] mx(t)=E[x(t)],且 m x ( t ) = 0 m_x(t)=0 mx(t)=0,则有
R = E [ x ( t ) x ( t ) H ] = E { [ A ( θ ) s ( t ) + n ( t ) ] [ A ( θ ) s ( t ) + n ( t ) ] H } R=E[x(t)x(t)^H]=E\{[A(\theta)s(t)+n(t)][A(\theta)s(t)+n(t)]^H\} R=E[x(t)x(t)H]=E{[A(θ)s(t)+n(t)][A(θ)s(t)+n(t)]H}
此外,还有以下几个条件必须满足:

  1. M > K M>K M>K,即阵元个数 M M M 要大于该阵列系统可能接收到的空间信号的个数。
  2. 对应于不同的信号来向 θ i ( i = 1 , 2 , . . . , K ) \theta_i(i=1,2,...,K) θi(i=1,2,...,K),信号的方向向量 a ( θ i ) a(\theta_i) a(θi) 是线性独立的。
  3. 阵列中噪声 n ( t ) n(t) n(t) 过程具有高斯分布特性,而且
    E { n ( t ) } = 0 E { n ( t ) n H ( t ) } = σ 2 I E { n ( t ) n H ( t ) } E\{n(t)\}=0\\ E\{n(t)n^H(t)\}=\sigma^2I\\ E\{n(t)n^H(t)\} E{n(t)}=0E{n(t)nH(t)}=σ2IE{n(t)nH(t)}
    其中, σ 2 \sigma^2 σ2 表示噪声功率。
  4. 空间源信号向量 s ( t ) s(t) s(t) 的协方差矩阵
    R s = E { s ( t ) s H ( t ) } R_s=E\{s(t)s^H(t)\} Rs=E{s(t)sH(t)}
    是对角非奇异阵,这表明空间源信号是不相干的。

由以上各式,可得出 R = A ( θ ) R s A H ( θ ) + σ 2 I R=A(\theta)R_sA^H(\theta)+\sigma^2I R=A(θ)RsAH(θ)+σ2I,可以证明 R R R 是非奇异的,且 R H = R R^H=R RH=R,因此 R R R 为正定 H e r m i t a i n Hermitain Hermitain 方阵,若利用酉变换实现对角化,其相似对角阵由 M M M 个不同的正实数组成,与之对应的 M M M 个特征向量是线性独立的。因此, R R R 的特征分解可以写为
R = U Σ U H = ∑ i = 1 M λ i u i u i H R=U\Sigma U^H=\sum^M_{i=1}\lambda_iu_iu_i^H R=UΣUH=i=1MλiuiuiH
其中, Σ = d i a g { λ 1 , λ 2 , . . . , λ M } \Sigma=diag\{\lambda_1,\lambda_2,...,\lambda_M\} Σ=diag{λ1,λ2,...,λM},并可证明其特征值服从排序: λ 1 ⩾ ⋅ ⋅ ⋅ ⩾ λ K > λ K + 1 = ⋅ ⋅ ⋅ = λ M = σ 2 \lambda_1\geqslant\cdot\cdot\cdot\geqslant\lambda_K>\lambda_{K+1}=\cdot\cdot\cdot=\lambda_M=\sigma^2 λ1λK>λK+1==λM=σ2。即前 K K K 个特征值与信号有关,其数值大于 σ 2 \sigma^2 σ2,这 K K K个较大特征值 λ 1 , λ 2 , ⋅ ⋅ ⋅ , λ K \lambda_1,\lambda_2,\cdot\cdot\cdot,\lambda_K λ1,λ2,,λK 所对应的特征向量表示为 u 1 , u 2 , ⋅ ⋅ ⋅ , u K u_1,u_2,\cdot\cdot\cdot,u_K u1,u2,,uK,它们构成信号子空间 U S U_S US,记 Σ S \Sigma_S ΣS K K K 个较大特征值构成的对角阵;而后 M − K M-K MK 个特征值完全取决于噪声,其数值军等于 σ 2 \sigma^2 σ2 λ K + 1 , λ K + 2 , ⋅ ⋅ ⋅ , λ M \lambda_{K+1},\lambda_{K+2},\cdot\cdot\cdot,\lambda_M λK+1,λK+2,,λM 所对应的特征向量构成噪声子空间 U N U_N UN,而 Σ N \Sigma_N ΣN 是由 M − K M-K MK 个较小特征值构成的对角阵。

因此,可以将 R R R 划分成
R = U S Σ S U S H + U N Σ N U N H R=U_S\Sigma_SU^H_S+U_N\Sigma_NU^H_N R=USΣSUSH+UNΣNUNH
式中, Σ S \Sigma_S ΣS为大特征值组成的对角阵; Σ N \Sigma_N ΣN为小特征值组成的对角阵。
Σ S = [ λ 1 λ 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ λ K ] \Sigma_S=\left [\begin{matrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \cdot\cdot\cdot & & \\ & & & \cdot\cdot\cdot & \\ & & & & \lambda_K \end{matrix}\right ] ΣS= λ1λ2λK
Σ N = [ λ K + 1 λ K + 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ λ M ] \Sigma_N=\left [\begin{matrix} \lambda_{K+1} & & & & \\ & \lambda_{K+2} & & & \\ & & \cdot\cdot\cdot & & \\ & & & \cdot\cdot\cdot & \\ & & & & \lambda_M \end{matrix}\right ] ΣN= λK+1λK+2λM
显然,当空间噪声是白噪声时,有 Σ N = σ 2 I ( M − K ) × ( M − K ) \Sigma_N=\sigma^2I_{(M-K)\times(M-K)} ΣN=σ2I(MK)×(MK)

性质1:协方差矩阵的大特征值对应的特征向量章程的空间与入射信号的导向向量张成的空间是同一个空间,即:
s p a n { u 1 ⃗ , u 2 ⃗ , ⋅ ⋅ ⋅ , u K ⃗ } = { a 1 ⃗ , a 2 ⃗ , ⋅ ⋅ ⋅ , a K ⃗ } span\{\vec{u_1},\vec{u_2},\cdot\cdot\cdot,\vec{u_K}\}=\{\vec{a_1},\vec{a_2},\cdot\cdot\cdot,\vec{a_K}\} span{u1 ,u2 ,,uK }={a1 ,a2 ,,aK }
性质2:信号子空间与噪声子空间正交

需要注意的是:在具体实现中,数据协方差矩阵采用协方差矩阵 R ^ \hat{R} R^ 代替,即:
R ^ = 1 L X ( t 1 ) X H ( t 2 ) \hat{R}=\frac{1}{L}X(t_1)X^H(t_2) R^=L1X(t1)XH(t2)

(6). 信号源估计方法:

阵列信号处理中的大部分算法均需要知道入射信号数。但在实际应用场合,信号源通常是一个未知数,往往需要先估计信号源的数目或假设信号源数目已知,然后再估计信号源的方向。根据特征空间的分析可知,在一定条件下,数据协方差矩阵的大特征值对应于信号源数,而小特征值是相等的(等于噪声功率)。这就说明可以直接根据数据协方差矩阵的大特征值来判断信号的源数。但在实际应用场合,由于快拍数、信噪比等方面的限制,在对实际得到的数据协方差矩阵进行特征分解后,不可能得到明显的大小特征值。很多学者提出了在信号数估计方面较为有效的方法,包括信息论方法、平滑秩法、矩阵分解法、盖氏圆方法和正则相关等方法。

①. 特征值分解方法:

在存在观测噪声时,接收信号模型为 X = A S + N X=AS+N X=AS+N R ^ \hat{R} R^ 表示有观测噪声时的混合信号的协方差矩阵:
R ^ = X X H / L = R + R N \hat{R}=XX^H/L=R+R_N R^=XXH/L=R+RN
其中, R = A E { x ( t ) x H ( t ) } A H ,   R N = σ 2 I R=AE\{x(t)x^H(t)\}A^H,\ R_N=\sigma^2I R=AE{x(t)xH(t)}AH, RN=σ2I σ 2 \sigma^2 σ2 为噪声功率。容易验证,若 λ 1 ⩾ λ 2 ⋅ ⋅ ⋅ ⩾ λ K > λ K + 1 = ⋅ ⋅ ⋅ λ M = 0 \lambda_1\geqslant\lambda_2\cdot\cdot\cdot\geqslant\lambda_K>\lambda_{K+1}=\cdot\cdot\cdot\lambda_M=0 λ1λ2λK>λK+1=λM=0 R R R M M M 个特征值,而 μ 1 ⩾ μ 2 ⩾ ⋅ ⋅ ⋅ ⩾ μ K ⩾ μ K + 1 ⩾ ⋅ ⋅ ⋅ μ M ⩾ 0 \mu_1\geqslant\mu_2\geqslant\cdot\cdot\cdot\geqslant\mu_K\geqslant\mu_{K+1}\geqslant\cdot\cdot\cdot\mu_M\geqslant0 μ1μ2μKμK+1μM0 R ^ \hat{R} R^ M M M 个特征值,则有 μ 1 ≈ λ 1 + σ 2 ,   μ 2 ≈ λ 2 + σ 2 ,   ⋅ ⋅ ⋅ , μ M ≈ λ M + σ 2 \mu_1\approx\lambda_1+\sigma^2,\ \mu_2\approx\lambda_2+\sigma^2,\ \cdot\cdot\cdot,\mu_M\approx\lambda_M+\sigma^2 μ1λ1+σ2, μ2λ2+σ2, ,μMλM+σ2,因此,在信噪比比较高的情况下,协方差矩阵 R ^ \hat{R} R^ 的主特征值数与信号源的个数都等于 K K K

将得到的协方差矩阵的特征值从大到小排列,即 μ 1 ⩾ ⋅ ⋅ ⋅ ⩾ μ K ⩾ μ K + 1 ⩾ ⋅ ⋅ ⋅ ⩾ μ M \mu_1\geqslant\cdot\cdot\cdot\geqslant\mu_K\geqslant\mu_{K+1}\geqslant\cdot\cdot\cdot\geqslant\mu_M μ1μKμK+1μM。设 γ k = μ k / μ k + 1   ( k = 1 , 2 , ⋅ ⋅ ⋅ , M − 1 ) \gamma_k=\mu_k/\mu_{k+1}\ (k=1,2,\cdot\cdot\cdot,M-1) γk=μk/μk+1 (k=1,2,,M1);作为观测样本矩阵的主特征值数,则信源数目 K K K 应取值使得 γ k = m a x ( γ 1 , γ 2 , ⋅ ⋅ ⋅ , γ M − 1 ) \gamma_k=max(\gamma_1,\gamma_2,\cdot\cdot\cdot,\gamma_{M-1}) γk=max(γ1,γ2,,γM1)。改方法的优点是运算简单,且估计准确率较高。

②. 信息论方法:

信息论方法有一个统一的表达形式:
J ( k ) = L ( k ) + P ( k ) J(k)=L(k)+P(k) J(k)=L(k)+P(k)
式中, L ( k ) L(k) L(k) 是对数的似然函数, P ( k ) P(k) P(k) 是罚函数。通过对 L ( k ) L(k) L(k) P ( k ) P(k) P(k) 的不同选择就可以得到不同的准则。

E D C EDC EDC 信息论准则:
E D C ( n ) = L ( M − k ) l n Λ ( k ) + k ( 2 M − k ) C ( L )       ( 1 ) EDC(n)=L(M-k)ln\Lambda(k)+k(2M-k)C(L)\ \ \ \ \ (1) EDC(n)=L(Mk)lnΛ(k)+k(2Mk)C(L)     (1)
其中, k k k 为待估计的信号源数(自由度), L L L 为采样数, Λ ( k ) \Lambda(k) Λ(k) 为似然函数,且
Λ ( k ) = 1 M − k ∑ i = k + 1 M λ i ( ∏ i = k + 1 M λ i ) 1 M − k       ( 2 ) \Lambda(k)=\frac{\frac{1}{M-k}\sum_{i=k+1}^M\lambda_i}{(\prod_{i=k+1}^M\lambda_i)^{\frac{1}{M-k}}}\ \ \ \ \ (2) Λ(k)=(i=k+1Mλi)Mk1Mk1i=k+1Mλi     (2)
另外,式 ( 1 ) (1) (1) 中的 C ( L ) C(L) C(L) 须满足式 ( 3 ) (3) (3) 和式 ( 4 ) (4) (4) 所示的条件:
l i m L → ∞ ( C ( L ) / L ) = 0 l i m L → ∞ ( C ( L ) / l n   l n L ) = ∞ lim_{L\rightarrow\infty}(C(L)/L)=0\\ lim_{L\rightarrow\infty}(C(L)/ln\ ln L)=\infty limL(C(L)/L)=0limL(C(L)/ln lnL)=
C ( L ) C(L) C(L)满足上述条件时, E D C EDC EDC 准则具有估计一致性。

在式 ( 1 ) (1) (1) 中选择 C ( L ) C(L) C(L) 分别为 1 , ( l n L ) / 2 1,(lnL)/2 1,(lnL)/2 ( l n   l n L ) / 2 (ln\ lnL)/2 (ln lnL)/2 时,就可以得到 A I C ,   M D L ,   H Q AIC,\ MDL,\ HQ AIC, MDL, HQ 等准则,即
A I C ( k ) = 2 L ( M − k ) l n Λ ( k ) + 2 k ( 2 M − k ) M D L ( k ) = L ( M − k ) l n Λ ( k ) + 1 2 k ( 2 M − k ) l n L H Q ( k ) = L ( M − k ) l n Λ ( k ) + 1 2 k ( 2 M − k ) l n   l n L AIC(k)=2L(M-k)ln\Lambda(k)+2k(2M-k)\\ MDL(k)=L(M-k)ln\Lambda(k)+\frac{1}{2}k(2M-k)ln L\\ HQ(k)=L(M-k)ln\Lambda(k)+\frac{1}{2}k(2M-k)ln\ ln L AIC(k)=2L(Mk)lnΛ(k)+2k(2Mk)MDL(k)=L(Mk)lnΛ(k)+21k(2Mk)lnLHQ(k)=L(Mk)lnΛ(k)+21k(2Mk)ln lnL
除了上述准则,还有一些修正的准则,得出如下结论:

  1. A I C AIC AIC 准则不是一致性估计,即在大快拍数的场合,它仍然有较大的误差概率;而 M D L MDL MDL 准则则相对较好; H Q HQ HQ 准则居于两者之间,主要是由准则中的罚函数项引起的。
  2. M D L MDL MDL 准则是一致性估计,也就是说在高信噪比情况下该准则有较好的性能,但在低信噪比情况下改准则相比于 A I C AIC AIC 有更高的误差概率。早高信噪比情况下, M D L MDL MDL 准则的误差概率比 A I C AIC AIC 准则的小。
  3. 当在 E D C EDC EDC 准则中 C ( L ) = 1 2 l n L C(L)=\frac{1}{2}lnL C(L)=21lnL 时, E D C EDC EDC 准则也就是 M D L MDL MDL 准则,所以说 M D L MDL MDL 准则是 E D C EDC EDC 准则的一种特例。
  4. 当在 E D C EDC EDC 准则中 C ( L ) = 1 2 l n   l n L C(L)=\frac{1}{2}ln\ lnL C(L)=21ln lnL 时, E D C EDC EDC 准则也就是 H Q HQ HQ 准则,所以说, H Q HQ HQ 准则也是 E D C EDC EDC 准则的一种特例。从低信噪比角度而言,在这三种准则中 H Q HQ HQ 准则最优,其次是 A I C AIC AIC 准则。
③. 其它信源数估计方法:

在用信息论准则来估计信源数时,只能对独立信号源的总数做出估计。当信号源相干时,午发准确估计信源数,而且对信号源的类别和结构不能做出判断。平滑秩序列法能在信号源相干的情况下有效工作。

但是,信号源估计方法,包括信息论方法、平滑秩方法及矩阵分解方法等都需要得到矩阵或修正后矩阵的特征值,然后再利用特征值来估计信源数。盖氏圆方法是一种不需要具体知道特征值的信源数估计方法。它用 G e r s c h g o r i n Gerschgorin Gerschgorin 圆盘定理,就可估计各特征值的位置,进而估计信号源。

上述介绍的信源数的估计方法都是针对高斯白噪声背景对入射信源数进行估计的。当噪声中有色成分加大时,这些算法性能下降很快。针对这种情形,可采用正则相关技术 ( C C T ) (CCT) (CCT)

Reference

[1] 阵列信号处理及MATLAB实现(第2版) ⊚ \circledcirc 张小飞 李建峰 徐大专 等 著.

  • 2
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值