BZOJ 3209 花神的数论题 (数位DP)

题目链接:BZOJ 3209

10000007不是质数。10000007=941*10627。用费马小定理的请注意。

组合数
1.组合恒等式:C(n,m)= C(n,n-m)= C(n-1,m-1)+C(n-1,m)
2.全组合数求和:sigma(c(N,i)) (i->0...N) = 2^N

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
#define LL long long
#define mod (10000007)

LL N;

int a[1000];
LL f[100][100];
LL num[100];

void init(){//f[i][j]:descrip int the digit i,the kinds of number that has j 1.
	for(int i=0;i<=66;i++)f[i][0]=1;
	for(int i=1;i<=66;i++)
		for(int j=1;j<=i;j++)
			f[i][j]=f[i-1][j]+f[i-1][j-1];
}

void get(int l){
	int tot=0;
	for(int i=l;i>=1;i--){
		if(a[i]){//if the number in this position is 1,it can update the answer.
			tot++;
			for(int j=0;j<i;j++){
				num[j+tot-1]+=f[i-1][j];
			}
		}
	}
}

LL pow(LL x,LL y){//quick power ,but be careful that we should use long long.
	LL t=1;
	while(y){
		if(y&1)t=(t*x)%mod;
		y>>=1;
		x=(x*x)%mod;
	}
	return t;
}

void find(){
	LL t=N;
	int len=0;
	while(t){
		a[++len]=t%2; t>>=1;
	}
	get(len);
	LL ans=1;
	
	for(int i=1;i<=66;i++){//the answer is sigma(i^ans[i]).
		ans=(ans*pow(i,num[i]))%mod;
	}
			
	cout<<ans<<endl;
}

int main(){
	init();
	cin>>N;
	N++;
	find();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值