Codeforces 575H Bots 组合恒等式+逆元法求组合数取模

题意简述
每次取 0 1,总共取 2N 次, 0 1都限取 N 次,求操作过程中可能产生的状态总数(对109+7取模)。 (1N106)

如下图, N=2 时有 19 种状态,红边表示选 1 ,蓝边表示选0(可互换)
N=2


分析
题目可以转化为在网格图中求从 (0,0) 走到 (N,N) 可能产生的所有状态总数,即求 ni=0nj=0f[i][j] f[i][j] 表示从原点走到 (i,j) 的走法数。
由组合数知识可知 f[i][j]=Cii+j
对横坐标为 i 的纵列求和
nj=0Cii+j=Cii+Cii+1+Cii+2++Cii+n
=(Ci+1i+1+Cii+1)+Cii+2++Cii+n
=Ci+1i+2+Cii+2++Cii+n
=Ci+1i+n+1
再对这些纵列和求和
ni=0Ci+1i+n+1=C1n+1+C2n+2+C3n+3++Cn+1n+n+1
=Cnn+1+Cnn+2+Cnn+3++Cnn+n+1
=Cn+1n+1+(Cn+1n+1+Cnn+1)+Cnn+2+Cnn+3++Cnn+n+1
=1+Cn+1n+2+Cnn+2+Cnn+3++Cnn+n+1
=Cn+12n+21
以上分析都使用了组合恒等式 Ckn=Ckn1+Ck1n1

接下来求 Cn+12n+21 mo=109+7 取模的结果
求逆元即可(三种做法如下)


一、扩展欧几里得算法
ani(a)1(modmo)
ani(a)+moy=1

const
mo=1000000007;
var
ans,p,x,y:int64;
i,n:longint;
fact:array[0..2000020] of int64;

function extgcd(a,b:int64;var x,y:int64):int64;
var x1,y1:int64;
begin
  if b=0 then
  begin
    x:=1;y:=0;
    exit(a);
  end
  else
  begin
    extgcd:=extgcd(b,a mod b,x1,y1);
    x:=y1;
    y:=x1-(a div b)*y1;
  end;
end;

function ni(a,m:int64):int64;
var tmp:int64;
begin
  tmp:=extgcd(a,m,x,y);
  exit((m+x mod m) mod m);
end;

function cmod(n,k:longint):longint;
var m:longint;
begin
    m:=mo;
    exit(fact[n]*ni(fact[k]*fact[n-k] mod mo,m)mod mo);
end;

begin
  readln(n);
  fact[1]:=1;
  for i:=2 to 2*n+2 do fact[i]:=fact[i-1]*i mod mo;
  ans:=cmod(2*n+2,n+1)-1;
  if ans=-1 then ans:=mo-1;
  writeln(ans);
end.

二、费马小定理
amo11(modmo)
gcd(a,mo)=1
ni(a)=amo2

const
mo=1000000007;
var
ans,p,x,y,tmp:int64;
i,n:longint;
fact:array[0..2000020] of longint;

function pow(a,b:int64):longint;
var ans:longint;
begin
    ans:=1;
    while b<>0 do
    begin
        if b and 1=1 then ans:=ans*a mod mo;
        a:=a*a mod mo;
        b:=b>>1;
    end;
    exit(ans);
end;

function ni(a:int64):int64;
var m:longint;
begin
    m:=mo-2;
    exit(pow(a,m));
end;//求逆元:mo为素数使用费马小定理

function cmod(n,k:longint):longint;
var m:longint;
begin
    m:=mo;
    exit(fact[n]*ni(tmp*fact[k]*fact[n-k] mod mo)mod mo);
end;

begin
  readln(n);
  fact[1]:=1;tmp:=1;
  for i:=2 to 2*n+2 do fact[i]:=tmp*fact[i-1]*i mod mo;
  ans:=cmod(2*n+2,n+1)-1;
  if ans=-1 then ans:=mo-1;
  writeln(ans);
end.

三、神奇方法

const
mo=1000000007;
var
ans,p,x,y,tmp:int64;
i,n:longint;
fact:array[0..2000020] of longint;

function ni(t:int64):int64;
var k:int64;
begin
    if t=1 then exit(1);
    k:=mo div t+1;
    exit(k*ni(k*t-mo)mod mo);
end;//求逆元:神奇O(log n)做法
{
  t=n!
  mo=k*t-r  //k=mo div t+1
  t*k≡r(mod mo)
  t*(k*ni[r])≡r*ni[r]≡1(mod mo)
  ni[t]=k*ni[r]
  //显然这个做法还可以用于递推做1~n的逆元预处理
}
function cmod(n,k:longint):longint;
var m:longint;
begin
    m:=mo;
    exit(fact[n]*ni(tmp*fact[k]*fact[n-k] mod mo)mod mo);
end;
begin
  readln(n);
  fact[1]:=1;tmp:=1;
  for i:=2 to 2*n+2 do fact[i]:=tmp*fact[i-1]*i mod mo;
  ans:=cmod(2*n+2,n+1)-1;
  if ans=-1 then ans:=mo-1;
  writeln(ans);
end.

虽然三种求逆元的方法都是 O(logn) 的效率,但extgcd的常数比较小,注意费马小定理+快速幂的求法要求mo为素数。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值