问题描述
【题目描述】
【输入】
【输出】
【样例输入】
2
4
5
【样例输出】
6
题目解析
这求解这道题之前我们需要知道以下定理:
- 对于 a x + b y = c ax+by=c ax+by=c;
- 若 a , b a,b a,b互质,则 x , y x,y x,y一定有解且有无穷多个; s . t . s.t. s.t. x , y > = 0 x,y>=0 x,y>=0,使 a x + b y = c ax+by=c ax+by=c无解的c个数有限且 m a x { c ∣ c 导 致 方 程 无 解 } = a × b − a − b max\{c|c导致方程无解\}=a×b-a-b max{c∣c导致方程无解}=a×b−a−b;
- 若 a , a a,a a,a不互质,则不能保证有解,有解即有无限多个c使方程无解。
类比以下,对于方程 a 0 x 0 + a 1 x 1 + a 2 x 2 + . . . + a n x n = c a_0x_0+a_1x_1+a_2x_2+...+a_nx_n=c a0x0+a1x1+a2x2+...+anxn=c有解: ( a 0 , a 1 , . . . a n ) (a_0,a_1,...a_n) (a0,a1,...an)互质,否则,若不互质,有无限多个c导致方程无解。
因此我们可以使用一个 b o o l bool bool类型的一维数组 f [ ] f[] f[]来表示该数能否被解出,初始状态 f [ 0 ] = t r u e ; f[0]=true; f[0]=true;接着用 i f ( f [ i ] ) if(f[i]) if(f[i])判断该位置是否已经可以凑出,若可以则 f [ i + a [ i ] ] = t r u e ; f[i+a[i]]=true; f[i+a[i]]=true;最后用循环计算为 f a l s e false false的数量即可。
C++代码
#include<bits/stdc++.h>
using namespace std;
int n,g;
int a[101];
bool f[10000]; //最大凑不出的数a*b-a-b
int gcd(int a,int b)
{
if(b==0) return a;
return gcd(b,a%b);
}
int main()
{
scanf("%d",&n);
f[0] = true; //初始化f[0]dp数组
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
if(i==1) g = a[i]; //初始化最大公约数
else g = gcd(a[i],g);
for(int j=0;j<10000;j++)
{
if(f[j]) f[j+a[i]]=true;
}
}
if(g!=1)
{
printf("INF\n");
return 0;
}
int ans = 0;
for(int i=0;i<10000;i++)
if(!f[i]) ans++;
printf("%d\n",ans);
return 0;
}