2017蓝桥杯C++A组——包子凑数

包子凑数题目链接

问题描述

【题目描述】
在这里插入图片描述
【输入】
在这里插入图片描述
【输出】
在这里插入图片描述
【样例输入】

2
4
5

【样例输出】

6

题目解析

这求解这道题之前我们需要知道以下定理:

  1. 对于 a x + b y = c ax+by=c ax+by=c
  2. a , b a,b a,b互质,则 x , y x,y x,y一定有解且有无穷多个; s . t . s.t. s.t. x , y > = 0 x,y>=0 x,y>=0,使 a x + b y = c ax+by=c ax+by=c无解的c个数有限且 m a x { c ∣ c 导 致 方 程 无 解 } = a × b − a − b max\{c|c导致方程无解\}=a×b-a-b max{cc}=a×bab
  3. a , a a,a a,a不互质,则不能保证有解,有解即有无限多个c使方程无解。

类比以下,对于方程 a 0 x 0 + a 1 x 1 + a 2 x 2 + . . . + a n x n = c a_0x_0+a_1x_1+a_2x_2+...+a_nx_n=c a0x0+a1x1+a2x2+...+anxn=c有解: ( a 0 , a 1 , . . . a n ) (a_0,a_1,...a_n) (a0,a1,...an)互质,否则,若不互质,有无限多个c导致方程无解。

因此我们可以使用一个 b o o l bool bool类型的一维数组 f [ ] f[] f[]来表示该数能否被解出,初始状态 f [ 0 ] = t r u e ; f[0]=true; f[0]=true;接着用 i f ( f [ i ] ) if(f[i]) if(f[i])判断该位置是否已经可以凑出,若可以则 f [ i + a [ i ] ] = t r u e ; f[i+a[i]]=true; f[i+a[i]]=true;最后用循环计算为 f a l s e false false的数量即可。

C++代码

#include<bits/stdc++.h>
using namespace std;
int n,g;
int a[101];
bool f[10000]; //最大凑不出的数a*b-a-b
int gcd(int a,int b)
{
    if(b==0) return a;
    return gcd(b,a%b);
}
int main()
{
    scanf("%d",&n);
    f[0] = true; //初始化f[0]dp数组
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        if(i==1) g = a[i]; //初始化最大公约数
        else g = gcd(a[i],g);
        for(int j=0;j<10000;j++)
        {
            if(f[j]) f[j+a[i]]=true;
        }
    }
    if(g!=1)
    {
        printf("INF\n");
        return 0;
    }
    int ans = 0;
    for(int i=0;i<10000;i++)
        if(!f[i]) ans++;
    printf("%d\n",ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芷汀若静

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值