关系代数
一、传统的集合运算
1、并运算
设关系R和关系S具有相同的目n(即两个关系都有n个属性列),且相应的属性取自同一个域,则关系R和关系S的并由属于R或属于S的元组组成。
记作:R∪S = {t | t ∈ R ∨ t ∈ S}
2、交运算
设关系R和关系S具有相同的目n,且对应的属性取自同一个域,则关系R和关系S的交由既属于R又属于S的元组组成;
记作:R∩S = {t | t ∈ R ∧ t ∈ S}
3、差运算
设关系R和关系S具有相同的目n,且对应的属性取自同一个域,则关系R与关系S的差由属于R而不属于S的所有元组组成。
记作:R−S = {t | t ∈ R ∧ t ∉ S}
4、广义笛卡尔积
两个分别为n目和m目的关系R和关系S的广义笛卡尔积是一个(n+m)列的元组集合,若R有k1个元组,S有k2个元组,则关系R和关系S的广义笛卡尔积有k1×k2个元组。
记作:R×S = {t | t = < tn, tm> ∧ tn ∈ R ∧ tm ∈ S}
二、专门的关系运算
1、选择运算
选择又称为限制,在关系R中选择满足给定条件的元组。
记作: σ F ( R ) = { t ∣ t ∈ R ∧ F ( t ) = ′ 真 ′ } \sigma_F(R)= \{t|t∈R ∧ F(t)='真' \} σF(R)={
t∣t∈R∧F(t)=′真′}
例:查询年龄小于20岁的学生:σSage<20(Student)
2、投影运算
关系R上的投影是从R中选择出若干属性列组成新的关系。
记作: π A ( R ) = { t [ A ] ∣ t ∈ R } \pi_A(R)= \{t[A] | t ∈ R\} πA(R)={
t[A]∣t∈R}
【注意】投影之后不仅取消了原关系中的某些列,而且还可能取消某些元组,因为取消了某些属性列之后,就可能出现重复行,应取消这些完全相同的行。
例:查询学生关系Student在学生姓名和院系属性上的投影:πSname,Sdept(Student)

本文详细介绍了关系代数的基本概念,包括传统集合运算和专门的关系运算,如选择、投影、连接和除运算。通过具体示例展示了如何使用关系代数进行数据查询,适合初学者理解和掌握。
最低0.47元/天 解锁文章
627





