Hadoop-2.7.3集群搭建中遇到的问题总结

0 前言:

1)Hadoop集群搭建参照前一篇博文Hadoop集群安装配置教程
2)集群有三个节点:Master、Slave1、Slave2,其中Master只作namenode,其余两个从节点做datanode

1 搭建过程中常用Hadoop指令:

1)启动Hadoop指令:

start-all.sh
mr-jobhistory-daemon.sh start historyserver

启动成功过程log输出:hadoop启动log输出

2)查看DataNode是否正常启动命令:

hdfs dfsadmin -report

shell输出:
DataNode启动情况
注:也可以通过web页面(http://master:50070)查看具体状态

3)创建HDFS上的用户输入输出目录:

hdfs dfs -mkdir /user/hadoop/input
hdfs dfs -mkdir /user/hadoop/output

4)将文件作为输入文件复制到分布式文件系统中:

以hadoop中配置文件作为输入数据源

hdfs dfs -put $HADOOP_HOME/etc/hadoop/*.xml /user/hadoop/input

注:复制后可通过web页面查看DataNode的Block pool used是否有变化

5)MapReduce作业:

以wordCount为例

hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-example-2.7.3.jar wordcount /user/hadoop/input /user/hadoop/output

注意:在此之前,必须手动新建output目录,目录不能重复!

hdfs dfs -mkdir /user/hadoop/output

6)停止Hadoop指令:

mr-jobhistory-daemon.sh stop historyserver
stop-all.sh

2 配置集群以及执行mapreduce中遇到的问题及解决方案分享:

1)SSH无密码登陆子节点失败:

原因:主节点和子节点编码格式不一致
解决:统一编码格式,具体如何实现SSH无密码登陆,参照上一篇博文

2)Hadoop安装包共享问题:

解决:Windows和Linux之间文件传输可使用secureCRT软件,在linux上安装”lrzsz”即可,使用命令rz,即可实现windows上传到linux;sz则反之,具体网上有资料~

3)是否需要手动配置三次?

答案:不需要!
怎么做:先配置安装主节点的hadoop,然后压缩打包成xxx.tar.gz文件,通过指令copy到从节点上:

scp xxx.tar.gz 用户名@Slave1:~/

这份文件即会出现在从节点的用户根目录下,解压配置hadoop环境变量即可

4)最蛋疼的问题!!!:执行mapreduce时,hadoop卡在Running job上,即hadoop stuck at running job

题外话:这个问题卡了我快两天的时间!各种google,参考了国内外各大神的帖子博文,最后还是得看hadoop的输出日志才对症下药,finish掉这个问题

问题现象:

网上盗的图,自己那个没记录下来。。。现象是一致的!

hadoop@ubuntu:~$ $HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.3.0.jar    wordcount /myprg outputfile1
14/04/30 13:20:40 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
14/04/30 13:20:51 INFO input.FileInputFormat: Total input paths to process : 1
14/04/30 13:20:53 INFO mapreduce.JobSubmitter: number of splits:1
14/04/30 13:21:02 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1398885280814_0004
14/04/30 13:21:07 INFO impl.YarnClientImpl: Submitted application application_1398885280814_0004
14/04/30 13:21:09 INFO mapreduce.Job: The url to track the job: http://ubuntu:8088/proxy/application_1398885280814_0004/
14/04/30 13:21:09 INFO mapreduce.Job: Running job: job_1398885280814_0004

然后打开(http://master:8088)查看Applications,发现刚提交的job一直卡在Accepted状态,并没有Running,等待许久也如此!

我碰到的原因有二:
一、内存不足引起
需要更改yarn-site.xml和mapred-site.xml的内存配置,我参考了国外的博文(http://zh.hortonworks.com/blog/how-to-plan-and-configure-yarn-in-hdp-2-0/)
具体修改如下:
1)yarn-site.xml

<configuration>
        <property>
                <name>yarn.resourcemanager.hostname</name>
                <value>Master</value>
        </property>
        <property>
                <name>yarn.nodemanager.aux-services</name>
                <value>mapreduce_shuffle</value>
        </property>
        <property>
                <name>yarn.nodemanager.resource.memory-mb</name>
                <value>40960</value>
        </property>
        <property>
                <name>yarn.scheduler.minimum-allocation-mb</name>
                <value>2048</value>
        </property>
        <property>
                <name>yarn.nodemanager.vmem-pmem-ratio</name>
                <value>2.1</value>
        </property>
</configuration>

2)mapred-site.xml

<configuration>
        <property>
                <name>mapreduce.framework.name</name>
                <value>yarn</value>
        </property>
        <property>
                <name>mapreduce.jobhistory.address</name>
                <value>Master:10020</value>
        </property>
        <property>
                <name>mapreduce.jobhistory.webapp.address</name>
                <value>Master:19888</value>
        </property>
        <property>
                <name>mapreduce.map.memory.mb</name>
                <value>4096</value>
        </property>
        <property>
                <name>mapreduce.reduce.memory.mb</name>
                <value>8192</value>
        </property>
        <property>
                <name>mapreduce.map.java.opts</name>
                <value>-Xmx3072m</value>
        </property>
        <property>
                <name>mapreduce.reduce.java.opts</name>
                <value>-Xmx6144m</value>
        </property>
</configuration>

然而,我是这么做了,可是问题依旧!
二、节点/etc/hostname配置摆乌龙
于是乎,我查看了hadoop的输出日志,我查看了“yarn-用户名-resourcemanager-主机名.log”,里面的内容相当多………………
然后,我发现了问题!

2016-09-20 15:31:59,339 ERROR org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerApplicationAttempt: Error trying to assign container token and NM token to an allocated container container_1474355964293_0002_01_000001
java.lang.IllegalArgumentException: java.net.UnknownHostException: 子节点hostname
        at org.apache.hadoop.security.SecurityUtil.buildTokenService(SecurityUtil.java:377)
        at org.apache.hadoop.yarn.server.utils.BuilderUtils.newContainerToken(BuilderUtils.java:258)
        at org.apache.hadoop.yarn.server.resourcemanager.security.RMContainerTokenSecretManager.createContainerToken(RMContainerTokenSecretManager.java:220)
        at org.apache.hadoop.yarn.server.resourcemanager.scheduler.SchedulerApplicationAttempt.pullNewlyAllocatedContainersAndNMTokens(SchedulerApplicationAttempt.java:455)
        at org.apache.hadoop.yarn.server.resourcemanager.scheduler.common.fica.FiCaSchedulerApp.getAllocation(FiCaSchedulerApp.java:269)
        at org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler.allocate(CapacityScheduler.java:988)
        at org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.RMAppAttemptImpl$AMContainerAllocatedTransition.transition(RMAppAttemptImpl.java:988)
        at org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.RMAppAttemptImpl$AMContainerAllocatedTransition.transition(RMAppAttemptImpl.java:981)
        at org.apache.hadoop.yarn.state.StateMachineFactory$MultipleInternalArc.doTransition(StateMachineFactory.java:385)
        at org.apache.hadoop.yarn.state.StateMachineFactory.doTransition(StateMachineFactory.java:302)
        at org.apache.hadoop.yarn.state.StateMachineFactory.access$300(StateMachineFactory.java:46)
        at org.apache.hadoop.yarn.state.StateMachineFactory$InternalStateMachine.doTransition(StateMachineFactory.java:448)
        at org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.RMAppAttemptImpl.handle(RMAppAttemptImpl.java:806)
        at org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.RMAppAttemptImpl.handle(RMAppAttemptImpl.java:107)
        at org.apache.hadoop.yarn.server.resourcemanager.ResourceManager$ApplicationAttemptEventDispatcher.handle(ResourceManager.java:803)
        at org.apache.hadoop.yarn.server.resourcemanager.ResourceManager$ApplicationAttemptEventDispatcher.handle(ResourceManager.java:784)
        at org.apache.hadoop.yarn.event.AsyncDispatcher.dispatch(AsyncDispatcher.java:184)
        at org.apache.hadoop.yarn.event.AsyncDispatcher$1.run(AsyncDispatcher.java:110)
        at java.lang.Thread.run(Thread.java:745)
Caused by: java.net.UnknownHostException: 子节点hostname

这下问题就清楚了,如何解决?很简单,配置每个节点的/etc/hostname(在ubuntu中),将Master、Slave1、Slave2分别配置在各自对应主机的/etc/hostname文件第一行,如:

Slave1

NETWORKING=yes
HOSTNAME=Slave1

然后三个主机全部重启!
激动人心的时候终于要到来啦!再次执行

hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-example-2.7.3.jar wordcount /user/hadoop/input /user/hadoop/output

执行过程及结果:

xxx@Master:~$ hadoop jar /opt/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar wordcount /user/hadoop/input /user/hadoop/output
16/09/21 12:54:57 INFO client.RMProxy: Connecting to ResourceManager at Master/10.100.3.88:8032
16/09/21 12:54:58 INFO input.FileInputFormat: Total input paths to process : 9
16/09/21 12:54:58 INFO mapreduce.JobSubmitter: number of splits:9
16/09/21 12:54:59 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1474433568841_0001
16/09/21 12:54:59 INFO impl.YarnClientImpl: Submitted application application_1474433568841_0001
16/09/21 12:54:59 INFO mapreduce.Job: The url to track the job: http://Master:8088/proxy/application_1474433568841_0001/
16/09/21 12:54:59 INFO mapreduce.Job: Running job: job_1474433568841_0001
16/09/21 12:55:11 INFO mapreduce.Job: Job job_1474433568841_0001 running in uber mode : false
16/09/21 12:55:11 INFO mapreduce.Job:  map 0% reduce 0%
16/09/21 12:55:56 INFO mapreduce.Job:  map 33% reduce 0%
16/09/21 12:56:02 INFO mapreduce.Job:  map 89% reduce 0%
16/09/21 12:56:03 INFO mapreduce.Job:  map 100% reduce 0%
16/09/21 12:56:12 INFO mapreduce.Job:  map 100% reduce 100%
16/09/21 12:56:13 INFO mapreduce.Job: Job job_1474433568841_0001 completed successfully
16/09/21 12:56:14 INFO mapreduce.Job: Counters: 49
        File System Counters
                FILE: Number of bytes read=22561
                FILE: Number of bytes written=1233835
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=29774
                HDFS: Number of bytes written=11201
                HDFS: Number of read operations=30
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=2
        Job Counters 
                Launched map tasks=9
                Launched reduce tasks=1
                Data-local map tasks=9
                Total time spent by all maps in occupied slots (ms)=885942
                Total time spent by all reduces in occupied slots (ms)=24432
                Total time spent by all map tasks (ms)=442971
                Total time spent by all reduce tasks (ms)=6108
                Total vcore-milliseconds taken by all map tasks=442971
                Total vcore-milliseconds taken by all reduce tasks=6108
                Total megabyte-milliseconds taken by all map tasks=1814409216
                Total megabyte-milliseconds taken by all reduce tasks=50036736
        Map-Reduce Framework
                Map input records=825
                Map output records=2920
                Map output bytes=37672
                Map output materialized bytes=22609
                Input split bytes=987
                Combine input records=2920
                Combine output records=1281
                Reduce input groups=622
                Reduce shuffle bytes=22609
                Reduce input records=1281
                Reduce output records=622
                Spilled Records=2562
                Shuffled Maps =9
                Failed Shuffles=0
                Merged Map outputs=9
                GC time elapsed (ms)=6441
                CPU time spent (ms)=14050
                Physical memory (bytes) snapshot=1877909504
                Virtual memory (bytes) snapshot=53782507520
                Total committed heap usage (bytes)=2054160384
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters 
                Bytes Read=28787
        File Output Format Counters 
                Bytes Written=11201

再看看web页面
这里写图片描述
这里写图片描述
希望对大家有一点点作用~

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值