【算法竞赛学习笔记】莫比乌斯反演-数学提升计划

38 篇文章 0 订阅
8 篇文章 0 订阅

title : 莫比乌斯反演
date : 2021-8-19
tags : ACM,数学
author : Linno


在这里插入图片描述

前置芝士

数论函数

{ 单 位 函 数 ε = { 1 , n = 1 0 , o t h e r w i s e 幂 函 数 I d k ( n ) = n k , 当 k = 1 时 为 恒 等 函 数 I d ( n ) , 当 k = 1 时 为 常 函 数 除 数 函 数 σ k ( n ) = ∑ d ∣ n d k , 当 k = 1 时 为 因 数 和 函 数 σ ( n ) , 当 k = 0 时 为 因 数 个 数 函 数 σ o ( n ) 欧 拉 函 数 φ ( n ) \begin{cases} 单位函数\varepsilon=\begin{cases}1,n=1\\0,otherwise\end{cases}\\ 幂函数Id_k(n)=n^k,当k=1时为恒等函数Id(n),当k=1时为常函数\\ 除数函数\sigma_k(n)=\sum_{d|n}d^k,当k=1时为因数和函数\sigma (n),当k=0时为因数个数函数\sigma_o(n)\\ 欧拉函数\varphi(n) \end{cases} ε={1n=10,otherwiseIdk(n)=nk,k=1Id(n)k=1σk(n)=dndkk=1σ(n)k=0σonφ(n)

上述函数均为积性函数,满足 f ( 1 ) = 1 f(1)=1 f(1)=1,且当 a , b a,b a,b互质时,有 f ( a ) f ( b ) = f ( a b ) f(a)f(b)=f(ab) f(a)f(b)=f(ab)

数论分块

可以快速计算含有除法向下取整的和式。

如果可以在 O ( 1 ) O(1) O(1)内算出 f ( r ) − f ( l ) f(r)-f(l) f(r)f(l)或已经预处理出 f f f的前缀和时,数论分块可以在 O ( n ) O(\sqrt n) O(n )的时间内计算上述和式的值。

富比尼定理

引理1: ∀ a , b , c ∈ Z , [ a b c ] = [ [ a b ] c ] \forall a,b,c\in \Z,[\frac{a}{bc}]=[\frac{[\frac{a}{b}]}{c}] a,b,cZ,[bca]=[c[ba]]

引理2: ∀ n ∈ N + , ∣ { [ n d ] ∣ d ∈ N + , d ≤ n } ∣ ≤ [ 2 n ] \forall n\in \N_+,|\{[\frac{n}{d}]|d\in \N_+,d\le n\}|\le [2\sqrt n] nN+,{[dn]dN+,dn}[2n ]

数论分块结论

对于常数n,使得式子 [ n i ] = [ n j ] [\frac{n}{i}]=[\frac{n}{j}] [in]=[jn]

成立的最大的满足的 i ≤ j ≤ n 的 j 的 值 为 [ n [ n i ] ] i\le j\le n的j的值为[\frac{n}{[\frac{n}{i}]}] ijnj[[in]n],即 [ n i ] [\frac{n}{i}] [in]所在的块的右端点为 [ n [ n i ] ] [\frac{n}{[\frac{n}{i}]}] [[in]n]

UVa11526 H(n)
int H(int n){
	int res=0,l=1,r;
	while(l<=n){
		r=n/(n/l);
		res+=(r-l+1)*(n/l);//原式为res=(res+n/i)
		l=r+1;//处理一些连续的块
	}
	return res;
}
CQOI2007 余数求和

计算 G ( n , k ) = ∑ i = 1 n k m o d    i G(n,k)=\sum_{i=1}^nk\mod i G(n,k)=i=1nkmodi

int G(int n,int k){
	int res=n*k,l=1,r;
	while(l<=n){
		if(k/l!=0) r=min(k/(k/l),n);
		else r=n;
		res-=(r-l+1)*(k/l)*(l+r)/2; 
		l=r+1;
	}
	return res;
}
狄利克雷卷积

定义两个数论函数 f , g f,g f,g的Dirichlet卷积为 ( f ∗ g ) ( n ) = ∑ d ∣ n f ( d ) g ( n d ) (f*g)(n)=\sum_{d|n}f(d)g(\frac{n}{d}) (fg)(n)=dnf(d)g(dn)

对于卷积前n项: h [ i ] = ∑ d ∣ i f [ d ] ∗ g [ i d ] h[i]=\sum_{d|i}f[d]*g[\frac{i}{d}] h[i]=dif[d]g[di]

F(i,1,n) h[i]=0;
F(i,1,n){
    F(j,1,n/i) h[i*j]=(h[i*j]+f[i]*g[j]%mod)%mod;
}
F(i,1,n) printf("%d ",h[i]);
快速幂优化
while(k){ //卷积k次之后的结果
    if(k&1){
        tot++;
        if(tot==1){F(i,1,n) g[i]=t[i];}
        else{
            F(i,1,n) now[i]=0;
            F(i,1,n){
                F(j,1,n/i) now[i*j]=(now[i*j]+g[i]*t[j]%M)%M;
            }
            F(i,1,n) g[i]=now[i];
        }
    }
    F(i,1,n) now[i]=0;
    F(i,1,n){
        F(j,1,n/i) now[i*j]=(now[i*j]+t[i]*t[j]%M)%M;
    }
    F(i,1,n) t[i]=now[i];
    k>>=1;
}

莫比乌斯反演

定理

F ( n ) 和 f ( n ) 是 定 义 在 非 负 整 数 集 合 上 的 两 个 函 数 , 并 且 满 足 条 件 F ( n ) = ∑ d ∣ n f ( d ) , 那 么 我 们 得 到 结 论 : f ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) 其 中 莫 比 乌 斯 函 数 μ ( d ) 的 定 义 : μ ( n ) = { 1 , n = 1 0 , n 含 有 平 方 因 子 ( − 1 ) k , k 为 n 的 本 质 不 同 质 因 子 个 数 F(n)和f(n)是定义在非负整数集合上的两个函数,\\ 并且满足条件F(n)=\sum_{d|n}f(d),那么我们得到结论:\\ f(n)=\sum_{d|n}\mu(d)F(\frac{n}{d})\\ 其中莫比乌斯函数\mu(d)的定义:\\ \mu(n)=\begin{cases} 1,n=1\\ 0,n含有平方因子\\ (-1)^k,k为n的本质不同质因子个数 \end{cases} F(n)f(n)F(n)=dnf(d)f(n)=dnμ(d)F(dn)μ(d)μ(n)=1,n=10,n(1)kkn

性质

( 1 ) 对 于 任 意 正 整 数 n , 有 ∑ d ∣ n μ ( d ) = { 1 , n = 1 0 , n > 1 (1)对于任意正整数n,有\sum_{d|n}\mu(d)=\begin{cases}1,n=1\\0,n>1\end{cases} (1)ndnμ(d)={1,n=10,n>1

( 2 ) 对 于 任 意 正 整 数 n , 有 ∑ d ∣ n μ ( d ) d = φ ( n ) n (2)对于任意正整数n,有\sum_{d|n}\frac{\mu(d)}{d}=\frac{\varphi(n)}{n} (2)ndndμ(d)=nφ(n)

莫比乌斯变换

如 果 有 f ( n ) = ∑ d ∣ n g ( d ) , 那 么 有 g ( n ) = ∑ d ∣ n μ ( d ) f ( n d ) 如果有f(n)=\sum_{d|n}g(d),那么有g(n)=\sum_{d|n}\mu(d)f(\frac{n}{d}) f(n)=dng(d),g(n)=dnμ(d)f(dn)

这种形式下f(n)成为数论g(n)的莫比乌斯变换,数论函数g(n)成为f(n)的莫比乌斯逆变换(反演)

常用结论

① [ g c d ( i , j ) = 1 ] = ∑ d ∣ g c d ( i , j ) μ ( d ) ①[gcd(i,j)=1]=\sum_{d|gcd(i,j)}\mu(d) [gcd(i,j)=1]=dgcd(i,j)μ(d)我们也可以简记为 ∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d|n}\mu(d)=[n=1] dnμ(d)=[n=1]

② d ( i ∗ j ) = ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = 1 ] , 其 中 d ( i ) 为 i 的 约 数 个 数 ②d(i*j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1],其中d(i)为i的约数个数 d(ij)=xiyj[gcd(x,y)=1],d(i)i

③ ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = k ] = ∑ i = 1 [ n k ] ∑ j = 1 [ m k ] [ g c d ( i , j ) = 1 ] ③\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=k]=\sum_{i=1}^{[\frac{n}{k}]}\sum_{j=1}^{[\frac{m}{k}]}[gcd(i,j)=1] i=1nj=1m[gcd(i,j)=k]=i=1[kn]j=1[km][gcd(i,j)=1]
∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = 1 ] ( n < m ) = ∑ i = 1 n ∑ j = 1 ∑ d ∣ g c d ( i , j ) μ ( d ) = ∑ d = 1 n μ ( d ) ∗ [ n d ] ∗ [ m d ] , 可 以 数 论 分 块 \sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=1](n<m)\\ =\sum_{i=1}^n\sum_{j=1}\sum_{d|gcd(i,j)}\mu(d)\\ =\sum_{d=1}^n\mu(d)*[\frac{n}{d}]*[\frac{m}{d}],可以数论分块 i=1nj=1m[gcd(i,j)=1](n<m)=i=1nj=1dgcd(i,j)μ(d)=d=1nμ(d)[dn][dm],
④ ∑ i = 1 n ∑ j = 1 m l c m ( i , j ) = ∑ d = 1 n d ∑ k = 1 [ n d ] μ ( k ) ∗ k 2 ∑ i = 1 [ n d k ] i ∑ j = 1 [ m d k ] j ④\sum_{i=1}^n\sum_{j=1}^m lcm(i,j)=\sum_{d=1}^nd\sum_{k=1}^{[\frac{n}{d}]}\mu(k)*k^2\sum_{i=1}^{[\frac{n}{dk}]}i\sum_{j=1}^{[\frac{m}{dk}]}j i=1nj=1mlcm(i,j)=d=1ndk=1[dn]μ(k)k2i=1[dkn]ij=1[dkm]j

线性筛求莫比乌斯反演函数
void init(){
	memset(vis,0,sizeof(vis));
	mu[1]=1;
	cnt=0;
	for(int i=2;i<N;i++){
		if(!vis[i]) prime[cnt++]=i;
		mu[i]=-1; 
	}
	for(int j=0;j<cnt&&i*prime[j]<N;j++){
		vis[i*prime[j]]=1;
		if(i%prime[j]) mu[i*prime[j]]=-mu[i];
		else{
			mu[i*prime[j]]=0;
			break;
		}
	}
}
证明莫比乌斯反演定理

∑ d ∣ n μ ( d ) F ( n d ) = ∑ d ∣ n μ ( d ) ∑ d ′ ∣ n d f ( d ′ ) = ∑ d ′ ∣ n f ( d ′ ) ∑ d ∣ n d ′ μ ( d ) = f ( n ) \sum_{d|n}\mu(d)F(\frac{n}{d})=\sum_{d|n}\mu(d)\sum_{d'|\frac{n}{d}}f(d')=\sum_{d'|n}f(d')\sum_{d|\frac{n}{d'}}\mu(d)=f(n) dnμ(d)F(dn)=dnμ(d)ddnf(d)=dnf(d)ddnμ(d)=f(n)

luogu P2522 [HAOI2011]Problem b

求 值 ∑ i = x n ∑ j = y m [ g c d ( i , j ) = k ] 求值\sum_{i=x}^n\sum_{j=y}^m [gcd(i,j)=k] i=xnj=ym[gcd(i,j)=k]

可容斥分为四块,每块化简为 ∑ d = 1 m i n ( [ n k ] , [ m k ] ) μ ( d ) [ n k d ] [ m k d ] \sum_{d=1}^{min([\frac{n}{k}],[\frac{m}{k}])}\mu(d)[\frac{n}{kd}][\frac{m}{kd}] d=1min([kn],[km])μ(d)[kdn][kdm]

时间复杂度 O ( N + T n ) O(N+T\sqrt n) O(N+Tn )

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
#define int long long
using namespace std;
const int N=1e6+7;

int is_pri[N],pri[N],mu[N],phi[N],sum[N],cnt;

void init(){ //预处理 
	memset(is_pri,1,sizeof(is_pri));
	mu[1]=1;phi[1]=1;sum[1]=1;
	cnt=0;
	for(int i=2;i<N;i++){
		if(is_pri[i]){
			pri[++cnt]=i;
			phi[i]=i-1;
			mu[i]=-1;
		}
		for(int j=1;j<=cnt&&i*pri[j]<N;j++){
			is_pri[i*pri[j]]=0;
			if(i%pri[j]){
				mu[i*pri[j]]=-mu[i];
				phi[i*pri[j]]=phi[i]*(pri[j]-1);
			}else{
				phi[i*pri[j]]=phi[i]*pri[j];
				mu[i*pri[j]]=0;
				break;
			}
		}
		sum[i]=sum[i-1]+mu[i]; //前缀和 
	}
}

int F(int n,int m,int k){
	int res=0;
	/*数论分块的原型 
	for(int d=1;d<=min(n,m);d++){
		res+=mu[d]*(n/d)*(m/d);
	}*/
	for(int l=1,r;l<=min(n,m);l=r+1){
		r=min(n/(n/l),m/(m/l));
		res+=(sum[r]-sum[l-1])*(n/l)*(m/l);
	} 
	return res;
}

signed main(){
	init();
	int n,a,b,c,d,k,ans;
	cin>>n;
	while(n--){
		cin>>a>>b>>c>>d>>k;
		ans=F(b/k,d/k,k)-F((a-1)/k,d/k,k)-F(b/k,(c-1)/k,k)+F((a-1)/k,(c-1)/k,k);//容斥 
		cout<<ans<<"\n";
	}
	return 0;
}
luogu P1829 [国家集训队]Crash的数字表格

求值$ \sum_{i=1}n\sum_{j=1}m\operatorname{lcm}(i,j)\qquad (n,m\leqslant 10^7) $
原 式 等 于 ∑ i = 1 n ∑ j = 1 m i ⋅ j gcd ⁡ ( i , j ) = ∑ d = 1 n d ⋅ ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ m d ⌋ [ gcd ⁡ ( i , j ) = 1 ]   i ⋅ j = ∑ d = 1 n ∑ d ∣ i n ∑ d ∣ j m μ ( d ) ⋅ i ⋅ j 令 g ( n , m ) = ∑ i = 1 n ∑ j = 1 m i ⋅ j = n ⋅ ( n + 1 ) 2 × m ⋅ ( m + 1 ) 2 sum ⁡ ( n , m ) = ∑ d = 1 n μ ( d ) ⋅ d 2 ⋅ g ( ⌊ n d ⌋ , ⌊ m d ⌋ ) 原 式 = ∑ d = 1 n d ⋅ sum ⁡ ( ⌊ n d ⌋ , ⌊ m d ⌋ ) , 可 用 数 论 分 块 和 线 性 筛 解 决 。 原式等于 \sum_{i=1}^n\sum_{j=1}^m\frac{i\cdot j}{\gcd(i,j)} \\ = \sum_{d=1}^n d\cdot\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[\gcd(i,j)=1]\ i\cdot j \\ = \sum_{d=1}^n\sum_{d\mid i}^n\sum_{d\mid j}^m\mu(d)\cdot i\cdot j\\ 令 g(n,m)=\sum_{i=1}^n\sum_{j=1}^m i\cdot j=\frac{n\cdot(n+1)}{2}\times\frac{m\cdot(m+1)}{2} \\ \operatorname{sum}(n,m)=\sum_{d=1}^n\mu(d)\cdot d^2\cdot g(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor) \\ 原式=\sum_{d=1}^n d\cdot\operatorname{sum}(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor) ,可用数论分块和线性筛解决。 i=1nj=1mgcd(i,j)ij=d=1ndi=1dnj=1dm[gcd(i,j)=1] ij=d=1ndindjmμ(d)ijg(n,m)=i=1nj=1mij=2n(n+1)×2m(m+1)sum(n,m)=d=1nμ(d)d2g(dn,dm)=d=1ndsum(dn,dm),线

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
//#define int long long
using namespace std;

const int N=1e7+7;
const int mod=20101009;

int is_pri[N],pri[N],g[N],mu[N],sum[N],d[N],t[N],cnt=0;

int Sum(int x,int y){
	return (x*(x+1)/2%mod)*(y*(y+1)/2%mod)%mod;
}

int func(int x,int y){
	int res=0;
	for(int i=1,j;i<=min(x,y);i=j+1){
		j=min(x/(x/i),y/(y/i));
		res=(res+(sum[j]-sum[i-1]+mod)*Sum(x/i,y/i)%mod)%mod;
	}
	return res;
}

int solve(int x,int y){
	int res=0;
	for(int i=1,j;i<=min(x,y);i=j+1){
		j=min(x/(x/i),y/(y/i));
		res=(res+(j-i+1)*(i+j)/2%mod*func(x/i,y/i)%mod)%mod;
	}
	return res;
}

void init(){
	memset(is_pri,1,sizeof(is_pri));
	mu[1]=1,d[1]=1,is_pri[1]=0;
	for(int i=2;i<N;i++){
		if(is_pri[i]){
			pri[++cnt]=i;
			mu[i]=-1;
			d[i]=2;
			t[i]=1;
		}
		for(int j=1;j<=cnt&&pri[j]*i<N;j++){
			is_pri[pri[j]*i]=0; 
			if(i%pri[j]){
				mu[i*pri[j]]=-mu[i];
				t[pri[j]*i]=1; //最小质因子出现的次数 
				d[pri[j]*i]=d[i]<<1;//因子个数
			}else{
				t[pri[j]*i]=t[i]+1; 
				d[pri[j]*i]=d[i]/(t[i]+1)*(t[i]+2);
				mu[i*pri[j]]=0;
				break;
			}
		}
	}
	for(int i=2;i<N;i++) d[i]+=d[i-1];
}

int solve(int n,int m){
	int res=0;	
	for(int p=1;p<=min(n,m);p++){
		res+=mu[p]*d[n/p]*d[m/p]; 
	}
	return res;
}

signed main(){
	init();
	int n,m,T;
	cin>>T;
	while(T--){
		cin>>n>>m;
		cout<<solve(n,m)<<"\n";
	}
	return 0;
}
luoguP3327 [SDOI2015]约数个数和

求 ∑ i = 1 n ∑ j = 1 m d ( i ⋅ j ) ( d ( n ) = ∑ i ∣ n 1 ) n , m , T ≤ 5 × 1 0 4 求\sum_{i=1}^n\sum_{j=1}^md(i\cdot j)\left(d(n)=\sum_{i \mid n}1\right) n,m,T\leq5\times10^4 i=1nj=1md(ij)(d(n)=in1)n,m,T5×104

其中d(n)表示n的约数个数。
d ( i ⋅ j ) = ∑ x ∣ i ∑ y ∣ j [ gcd ⁡ ( x , y ) = 1 ] = ∑ x ∣ i ∑ y ∣ j ∑ p ∣ gcd ⁡ ( x , y ) μ ( p ) = ∑ p = 1 m i n ( i , j ) ∑ x ∣ i ∑ y ∣ j [ p ∣ gcd ⁡ ( x , y ) ] ⋅ μ ( p ) = ∑ p ∣ i , p ∣ j μ ( p ) ∑ x ∣ i ∑ y ∣ j [ p ∣ gcd ⁡ ( x , y ) ] = ∑ p ∣ i , p ∣ j μ ( p ) ∑ x ∣ i p ∑ y ∣ j p 1 = ∑ p ∣ i , p ∣ j μ ( p ) d ( i p ) d ( j p ) \begin{aligned} d(i\cdot j)=&\sum_{x \mid i}\sum_{y \mid j}[\gcd(x,y)=1]\\ =&\sum_{x \mid i}\sum_{y \mid j}\sum_{p \mid \gcd(x,y)}\mu(p)\\ =&\sum_{p=1}^{min(i,j)}\sum_{x \mid i}\sum_{y \mid j}[p \mid \gcd(x,y)]\cdot\mu(p)\\ =&\sum_{p \mid i,p \mid j}\mu(p)\sum_{x \mid i}\sum_{y \mid j}[p \mid \gcd(x,y)]\\ =&\sum_{p \mid i,p \mid j}\mu(p)\sum_{x \mid \frac{i}{p}}\sum_{y \mid \frac{j}{p}}1\\ =&\sum_{p \mid i,p \mid j}\mu(p)d\left(\frac{i}{p}\right)d\left(\frac{j}{p}\right)\\ \end{aligned} d(ij)======xiyj[gcd(x,y)=1]xiyjpgcd(x,y)μ(p)p=1min(i,j)xiyj[pgcd(x,y)]μ(p)pi,pjμ(p)xiyj[pgcd(x,y)]pi,pjμ(p)xpiypj1pi,pjμ(p)d(pi)d(pj)
将上述式子代回原式
∑ i = 1 n ∑ j = 1 m d ( i ⋅ j ) = ∑ i = 1 n ∑ j = 1 m ∑ p ∣ i , p ∣ j μ ( p ) d ( i p ) d ( j p ) = ∑ p = 1 m i n ( n , m ) ∑ i = 1 n ∑ j = 1 m [ p ∣ i , p ∣ j ] ⋅ μ ( p ) d ( i p ) d ( j p ) = ∑ p = 1 m i n ( n , m ) ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ m p ⌋ μ ( p ) d ( i ) d ( j ) = ∑ p = 1 m i n ( n , m ) μ ( p ) ∑ i = 1 ⌊ n p ⌋ d ( i ) ∑ j = 1 ⌊ m p ⌋ d ( j ) = ∑ p = 1 m i n ( n , m ) μ ( p ) S ( ⌊ n p ⌋ ) S ( ⌊ m p ⌋ ) ( S ( n ) = ∑ i = 1 n d ( i ) ) \begin{aligned} &\sum_{i=1}^n\sum_{j=1}^md(i\cdot j)\\ =&\sum_{i=1}^n\sum_{j=1}^m\sum_{p \mid i,p \mid j}\mu(p)d\left(\frac{i}{p}\right)d\left(\frac{j}{p}\right)\\ =&\sum_{p=1}^{min(n,m)} \sum_{i=1}^n\sum_{j=1}^m [p \mid i,p \mid j]\cdot\mu(p)d\left(\frac{i}{p}\right)d\left(\frac{j}{p}\right)\\ =&\sum_{p=1}^{min(n,m)} \sum_{i=1}^{\left\lfloor\frac{n}{p}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{p}\right\rfloor} \mu(p)d(i)d(j)\\ =&\sum_{p=1}^{min(n,m)}\mu(p) \sum_{i=1}^{\left\lfloor\frac{n}{p}\right\rfloor}d(i) \sum_{j=1}^{\left\lfloor\frac{m}{p}\right\rfloor}d(j)\\ =&\sum_{p=1}^{min(n,m)}\mu(p) S\left(\left\lfloor\frac{n}{p}\right\rfloor\right) S\left(\left\lfloor\frac{m}{p}\right\rfloor\right) \left(S(n)=\sum_{i=1}^{n}d(i)\right)\\ \end{aligned} =====i=1nj=1md(ij)i=1nj=1mpi,pjμ(p)d(pi)d(pj)p=1min(n,m)i=1nj=1m[pi,pj]μ(p)d(pi)d(pj)p=1min(n,m)i=1pnj=1pmμ(p)d(i)d(j)p=1min(n,m)μ(p)i=1pnd(i)j=1pmd(j)p=1min(n,m)μ(p)S(pn)S(pm)(S(n)=i=1nd(i))
那么 O ( n ) O(n) O(n)预处理前缀和, O ( n ) O(\sqrt n) O(n )分块处理询问,就可以解决问题。

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
#define int long long
using namespace std;

const int N=1e5+7;
int is_pri[N],pri[N],g[N],mu[N],sum[N],d[N],t[N],cnt=0;

void init(){
	memset(is_pri,1,sizeof(is_pri));
	mu[1]=1,d[1]=1,is_pri[1]=0;
	for(int i=2;i<N;i++){
		if(is_pri[i]){
			pri[++cnt]=i;
			mu[i]=-1;
			d[i]=2;
			t[i]=1;
		}
		for(int j=1;j<=cnt&&pri[j]*i<N;j++){
			is_pri[pri[j]*i]=0; 
			if(i%pri[j]){
				mu[i*pri[j]]=-mu[i];
				t[pri[j]*i]=1; //最小质因子出现的次数 
				d[pri[j]*i]=d[i]<<1;//因子个数
			}else{
				t[pri[j]*i]=t[i]+1; 
				d[pri[j]*i]=d[i]/(t[i]+1)*(t[i]+2);
				mu[i*pri[j]]=0;
				break;
			}
		}
	}
	for(int i=2;i<N;i++) d[i]+=d[i-1],mu[i]+=mu[i-1];
}

int solve(int n,int m){
	int res=0;	
	for(int l=1,r;l<=min(n,m);l=r+1){
		r=min(n/(n/l),m/(m/l));
		res+=(mu[r]-mu[l-1])*d[n/l]*d[m/l]; 
	}
	return res;
}

signed main(){
	init();
	int n,m,T;
	cin>>T;
	while(T--){
		cin>>n>>m;
		cout<<solve(n,m)<<"\n";
	}
	return 0;
}
luoguP2257 YY的GCD

给 定 n , m , 求 1 ≤ x ≤ N , 1 ≤ y ≤ M 且 g c d ( x , y ) 为 质 数 的 ( x , y ) 有 多 少 对 给定n,m,求1\le x\le N,1\le y\le M且gcd(x,y)为质数的(x,y)有多少对 n,m1xN,1yMgcd(x,y)(x,y)
A n s = ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = p r i m e ] = ∑ k ∈ p r i m e n ∑ i = 1 [ n k ] ∑ j = 1 [ m k ] [ g c d ( i , j ) = 1 ] ∑ k ∈ p r i m e n ∑ i = 1 [ n k ] ∑ j = 1 [ m k ] ∑ d ∣ g c d ( i , j ) μ ( d ) = ∑ k = 1 n ∑ d = 1 n k μ ( d ) ∗ [ n k d ] ∗ [ m k d ] ( k ∈ p r i m e ) Ans=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=prime]=\sum_{k\in prime}^n\sum_{i=1}^{[\frac{n}{k}]}\sum_{j=1}^{[\frac{m}{k}]}[gcd(i,j)=1]\\\sum_{k\in prime}^n\sum_{i=1}^{[\frac{n}{k}]}\sum_{j=1}^{[\frac{m}{k}]}\sum_{d|gcd(i,j)}\mu(d)= \sum_{k=1}^n\sum_{d=1}^{\frac{n}{k}}\mu(d)*[\frac{n}{kd}]*[\frac{m}{kd}](k\in prime) Ans=i=1nj=1m[gcd(i,j)=prime]=kprimeni=1[kn]j=1[km][gcd(i,j)=1]kprimeni=1[kn]j=1[km]dgcd(i,j)μ(d)=k=1nd=1knμ(d)[kdn][kdm](kprime)
优化1:用T替换kd然后进行预处理,时间复杂度接近 O ( n ) O(n) O(n)
A n s = ∑ T = 1 n [ n T ] ∗ [ m T ] ∑ k ∣ T , k ∈ p r i m e μ ( T k ) Ans=\sum_{T=1}^n[\frac{n}{T}]*[\frac{m}{T}]\sum_{k|T,k\in prime}\mu(\frac{T}{k}) Ans=T=1n[Tn][Tm]kT,kprimeμ(kT)

#include<bits/stdc++.h>
using namespace std;
const int N=1e7+7;
typedef long long ll;
int mu[N],pri[N],cnt=0;
ll f[N];
bool is_pri[N];
void init(){
	mu[1]=1;is_pri[1]=1;
	for(int i=2;i<N;i++){
		if(!is_pri[i]){
			pri[++cnt]=i;
			mu[i]=-1;
		}
		for(int j=1;j<=cnt&&pri[j]*i<N;j++){
			is_pri[i*pri[j]]=1;
			if(i%pri[j]){
				mu[i*pri[j]]=-mu[i];
			}else{
				break;
			}
		}
	}
	for(int i=1;i<=cnt;i++){
		for(int j=1;pri[i]*j<N;j++){
			f[j*pri[i]]+=mu[j];
		}
	}
	for(int i=1;i<N;i++) f[i]+=f[i-1];
}

ll solve(int n,int m){
	ll res=0;
	for(int l=1,r;l<=n;l=r+1){
		r=min(n/(n/l),m/(m/l));
		res+=(ll)(f[r]-f[l-1])*(ll)(n/l)*(ll)(m/l);
	}
	return res;
}

signed main(){
	init();
	int n,m,t;
	scanf("%d",&t);
	while(t--){
		scanf("%d%d",&n,&m);
		if(n>m) swap(n,m);
		cout<<solve(n,m)<<"\n";
	}
	return 0;
}

参考资料

OI-wiki

《信息学奥赛之数学一本通》 林厚从

https://blog.csdn.net/zsjzliziyang/article/details/107749294

https://www.cnblogs.com/peng-ym/p/9446555.html

https://www.cnblogs.com/peng-ym/p/8652288.htmlhttps://www.luogu.com.cn/blog/An-Amazing-Blog/mu-bi-wu-si-fan-yan-ji-ge-ji-miao-di-dong-xi

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RWLinno

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值