[Möbius]个人对Möbius反演的理解

Möbius反演的引入

f(n)g(n) f(n)=d|ng(d)
我们发现
f(1)=g(1)
f(2)=g(1)+g(2)
f(3)=g(1)+g(3)
f(4)=g(1)+g(2)+g(4)
f(5)=g(1)+g(5)
f(6)=g(1)+g(2)+g(3)+g(6)
….
那么我们就有
g(1)=f(1)
g(2)=f(2)f(1)
g(3)=f(3)f(1)
g(4)=f(4)f(2)
g(5)=f(5)f(1)
g(6)=f(6)f(3)f(2)+f(1)
观察这些等式,发现这样一个规律: g(n)=d|nf(d)?
进一步地我们发现上面的 ? 与d无直接关系,而是与nd有关,我们将这个记为 μ(nd)
g(n)=d|nf(d)μ(nd)
这就是 Möbius 反演,实际上是容斥原理在定义在整数集上的一个偏序关系的拓展。

Möbius反演的定义

f(n)=d|ng(d)<=>g(n)=d|nf(d)μ(nd)

μ(d)Möbius
(1)d=1μ(d)=1
(2)d=p1p2...pkμ(d)=(1)k
(3)μ(d)=0

Möbius反演的性质

性质一
对于任意正整数 n,d|n=[n==1]
证明:利用二项式定理即可

性质二
μ(n)
证明:利用定义即可

性质三
f(n)g(n)
证明:略

Möbius反演的证明

证明
g(n)
=d|nf(nd)μ(d)
=d|nμ(d)i|ndg(i) 这时我们交换求和顺序
=i|ng(i)d|niμ(d)
根据性质一,
i=nd|niμ(d)=1
其他情况时 d|niμ(d)=0
综上,得证

Möbius反演的变形

形式一 f(n)=d|ng(d)<=>g(n)=d|nf(d)μ(nd)
形式二 f(i)=nid=1g(di)<=>g(i)=nid=1f(di)μ(d)
形式二证明同形式一,略

Möbius反演的应用

方法一:构造函数法

应用一 g(n)d|ng(d) 很容易求
应用二 g(i)nid=1g(di)

方法二:运用公式法

公式一 d|nμ(d)=[n==1]
公式二 d|nϕ(d)=n
这里有一些常见问题的运用示范
http://blog.csdn.net/Lcomyn/article/details/47281717

四大要点
(1)
要点:多往 gcd,lcmgcdgcd
(2)
要点:常见的有对 gcd(i,j)=d 的替换,还有对 pd=T 的替换,转换求和的思维方式,改变求和顺序
(3)线
要点:一般来说是一个奇怪的积性函数,利用筛法即可
(4)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值