【WC2014】时空穿梭【组合数】【莫比乌斯反演】【整除分块】【暴力多项式】

题意: T T T 组数据,给一个 n n n 维空间,第 i i i 维大小为 [ 1 , m i ] ∩ Z [1,m_i]\cap \Z [1,mi]Z,求大小为 c c c 的严格偏序上升的共线点集个数。答案模 10007 10007 10007

T ≤ 100 , n ≤ 11 , m ≤ 1 0 5 , c ≤ 20 T\leq 100,n\leq 11,m\leq 10^5,c\leq 20 T100,n11,m105,c20

神仙题

设空间大小向量为 m m m, M M M 为坐标最大值。下文中若未特殊说明,对向量无公开定义的运算均定义为其每一维坐标的运算。

考虑第一个点到最后一个点的差向量 x x x,它中间有 gcd ⁡ ( x ) − 1 \gcd(x)-1 gcd(x)1 个空隙可以放, gcd ⁡ \gcd gcd 为所有坐标数值的 gcd ⁡ \gcd gcd。所以

a n s = ∑ x ≤ m ( gcd ⁡ ( x ) − 1 c − 2 ) ∏ i = 1 n ( m i − x i ) ans=\sum_{x\leq m}\binom{\gcd(x)-1}{c-2}\prod_{i=1}^n(m_i-x_i) ans=xm(c2gcd(x)1)i=1n(mixi)

看到有个 gcd ⁡ \gcd gcd ,想到反演。

a n s = ∑ d = 1 M ( d − 1 c − 2 ) ∑ x ≤ m [ gcd ⁡ ( x ) = d ] ∏ i = 1 n ( m i − x i ) = ∑ d = 1 M ( d − 1 c − 2 ) ∑ x ≤ m d [ gcd ⁡ ( x ) = 1 ] ∏ i = 1 n ( m i − d x i ) = ∑ d = 1 M ( d − 1 c − 2 ) ∑ x ≤ m d ∑ k ∣ x μ ( k ) ∏ i = 1 n ( m i − d x i ) = ∑ d = 1 M ( d − 1 c − 2 ) ∑ k ∣ x μ ( k ) ∑ x ≤ m d k ∏ i = 1 n ( m i − d k x i ) = ∑ d = 1 M ∑ x ≤ m d ∏ i = 1 n ( m i − d x i ) ∑ k ∣ d ( k − 1 c − 2 ) μ ( d k ) ans=\sum_{d=1}^M\binom{d-1}{c-2}\sum_{x\leq m}[\gcd(x)=d]\prod_{i=1}^n(m_i-x_i)\\ =\sum_{d=1}^M\binom{d-1}{c-2}\sum_{x\leq \frac{m}{d}}[\gcd(x)=1]\prod_{i=1}^n(m_i-dx_i)\\ =\sum_{d=1}^M\binom{d-1}{c-2}\sum_{x\leq \frac{m}{d}}\sum_{k\mid x}\mu (k)\prod_{i=1}^n(m_i-dx_i)\\ =\sum_{d=1}^M\binom{d-1}{c-2}\sum_{k\mid x}\mu (k)\sum_{x\leq \frac{m}{dk}}\prod_{i=1}^n(m_i-dkx_i)\\ =\sum_{d=1}^M\sum_{x\leq \frac md}\prod_{i=1}^n(m_i-dx_i)\sum_{k\mid d}\binom{k-1}{c-2}\mu (\frac dk) ans=d=1M(c2d1)xm[gcd(x)=d]i=1n(mixi)=d=1M(c2d1)xdm[gcd(x)=1]i=1n(midxi)=d=1M(c2d1)xdmkxμ(k)i=1n(midxi)=d=1M(c2d1)kxμ(k)xdkmi=1n(midkxi)=d=1Mxdmi=1n(midxi)kd(c2k1)μ(kd)

g ( n ) = ∑ d ∣ n ( d − 1 c − 2 ) μ ( n d ) g(n)=\sum\limits_{d\mid n}\binom{d-1}{c-2}\mu(\frac nd) g(n)=dn(c2d1)μ(dn),这个随便预处理一下就能算出来。

a n s = ∑ d = 1 M ∑ x ≤ m d ∏ i = 1 n ( m i − d x i ) g ( d ) = ∑ d = 1 M g ( d ) ∏ i = 1 n ∑ x = 1 ⌊ m i d ⌋ ( m i − d x ) ans=\sum_{d=1}^M\sum_{x\leq \frac md}\prod_{i=1}^n(m_i-dx_i)g(d)\\ =\sum_{d=1}^Mg(d)\prod_{i=1}^n\sum_{x=1}^{\left\lfloor\frac{m_i}{d}\right\rfloor}(m_i-dx) ans=d=1Mxdmi=1n(midxi)g(d)=d=1Mg(d)i=1nx=1dmi(midx)

这样大概是 O ( T m n log ⁡ n ) \Omicron(Tmn\log n) O(Tmnlogn) 的,有点卡。

看到整除,立刻想到整除分块。

注意到后面是一个关于 d d d n n n 次多项式(每个和式次数为 1 1 1),如果要整除分块的话只需要求这个多项式的前缀和。

设这个多项式系数为 a i a_i ai,那么一次区间查询

∑ d = l r g ( d ) f ( d ) = ∑ d = l r g ( d ) ∑ i = 0 n a i d i = ∑ i = 0 n a i ∑ d = l r g ( d ) d i \sum_{d=l}^rg(d)f(d)\\ =\sum_{d=l}^rg(d)\sum_{i=0}^na_id^i\\ =\sum_{i=0}^na_i\sum_{d=l}^rg(d)d^i d=lrg(d)f(d)=d=lrg(d)i=0naidi=i=0naid=lrg(d)di

后面是和询问无关的,直接预处理就可以 O ( n ) \Omicron(n) O(n) 回答。

现在的问题是如何维护多项式。 整除分块时一共变化了 O ( n m ) \Omicron(n\sqrt m) O(nm ) 次,每次变化的时候把操作的 1 1 1 次多项式做一个多项式乘法或除法就可以了。

然后是喜闻乐见的除 0 0 0 问题。记下除了几个 0 0 0 多项式即可,但其他人都没提到这个,代码也看不懂,一脸懵逼,可能写法不太一样吧……

复杂度大概是 O ( n c m + T n 2 m ) \Omicron(ncm+Tn^2\sqrt m) O(ncm+Tn2m )

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cctype>
using namespace std;
typedef long long ll;
inline int read()
{
	int ans=0;
	char c=getchar();
	while (!isdigit(c)) c=getchar();
	while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
	return ans;
}
const int MOD=10007;
inline int add(const int& x,const int& y){return x+y>=MOD? x+y-MOD:x+y;}
inline int dec(const int& x,const int& y){return x<y? x-y+MOD:x-y;}
inline int qpow(int a,int p)
{
	int ans=1;
	a%=MOD;
	while (p)
	{
		if (p&1) ans=ans*a%MOD;
		a=a*a%MOD,p>>=1;
	}
	return ans;
}
const int N=1e5,MAXN=N+5;
int np[MAXN],pl[MAXN],cnt;
inline void init()
{
	np[1]=1;
	for (int i=2;i<=N;i++)
	{
		if (!np[i]) pl[++cnt]=i;
		for (int j=1,x;(x=i*pl[j])<=N;j++)
		{
			np[x]=1;
			if (i%pl[j]==0) break;
		}
	}
}
int C[MAXN][20],g[22][MAXN],S[12][22][MAXN];
int a[12],n,c,lim[12],m[12],zero;
inline void mul(int x,int y)
{
	if (!x&&!y) return (void)(++zero);
	for (int i=n;i>=1;i--) a[i]=(a[i-1]*x+a[i]*y)%MOD;
	a[0]=a[0]*y%MOD;
}
inline void div(int x,int y)
{
	if (!y)
	{
		if (!x) return (void)(--zero);
		int ix=qpow(x,MOD-2);
		for (int i=0;i<n;i++) a[i]=a[i+1]*ix%MOD;
		a[n]=0; 
		return;
	}
	int iy=qpow(y,MOD-2);
	a[0]=a[0]*iy%MOD;
	for (int i=1;i<=n;i++) a[i]=dec(a[i],a[i-1]*x%MOD)*iy%MOD;
}
inline int calc(int d,int l,int r)
{
	for (int i=1;i<=n;i++)
	{
		int cur=m[i]/d;
		if (cur<lim[i])
		{
			div(dec(0,lim[i]*(lim[i]+1ll)/2%MOD),(ll)lim[i]*m[i]%MOD);
			lim[i]=cur;
			mul(dec(0,lim[i]*(lim[i]+1ll)/2%MOD),(ll)lim[i]*m[i]%MOD);
		}
	}
	if (zero) return 0;
	int ans=0;
	for (int i=0;i<=n;i++) 
		ans=(ans+a[i]*dec(S[i][c][r],S[i][c][l-1]))%MOD;
	return ans;
}
int main()
{
	init();
	C[0][0]=1;
	for (int i=1;i<=N;i++)
	{
		C[i][0]=1;
		for (int j=1;j<20;j++) C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
	}
	for (int t=2;t<22;t++)
	{
		for (int i=1;i<=N;i++) g[t][i]=C[i-1][t-2];
		for (int j=1;j<=cnt;j++)
			for (int i=N/pl[j];i>=1;i--)
				g[t][i*pl[j]]=dec(g[t][i*pl[j]],g[t][i]);
		for (int i=0;i<12;i++)
			for (int d=1;d<=N;d++)
				S[i][t][d]=add(S[i][t][d-1],qpow(d,i)*g[t][d]%MOD);			
	}
	for (int T=read();T;T--)
	{
		zero=0;
		n=read(),c=read();
		int M=N;
		for (int i=1;i<=n;i++) M=min(M,lim[i]=m[i]=read());
		memset(a,0,sizeof(a));
		a[0]=1;
		for (int i=1;i<=n;i++) mul(dec(0,m[i]*(m[i]+1ll)/2%MOD),(ll)m[i]*m[i]%MOD);
		int ans=0;
		for (int l=1,r;l<=M;l=r+1)
		{
			r=M;
			for (int i=1;i<=n;i++) r=min(r,m[i]/(m[i]/l));
			ans=add(ans,calc(l,l,r));
		}
		printf("%d\n",ans);
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值