dp 18 滑雪

dp 18 滑雪

题目描述

给定一个 n × m 的矩阵, 给定一个n \times m的矩阵, 给定一个n×m的矩阵,
矩阵中的数字表示滑雪场各个区域的高度,你可以选择从任意一个区域出发,并滑向任意一个周边的高度严格更低的区域(周边的定义是上下左右相邻的区域)。请问整个滑雪场中最长的滑道有多长?(滑道的定义是从一个点出发的一条高度递减的路线)。

(本题和矩阵最长递增路径类似,该题是当年NOIP的一道经典题)
数据范围: 1 ≤ n , m ≤ 100 ,矩阵中的数字满足 1 ≤ v a l ≤ 1000 数据范围: 1 \le n,m \le 100 ,矩阵中的数字满足 1 \le val \le 1000 数据范围:1n,m100,矩阵中的数字满足1val1000

输入描述:

第一行输入两个正整数 n 和 m 表示矩阵的长宽。
后续 n 行输入中每行有 m 个正整数,表示矩阵的各个元素大小。

输出描述

输出最长的路线

输入样例
5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
25

4 4
13 12 11 10
14 3 4 9
15 2 5 8
16 1 6 7
16

4 4
9 8 7 10
4 5 6 10
3 2 1 10
10 10 10 10
9
思路

此题为记忆化搜索的题目。类似于之前写过的打家劫舍3,整体利用dfs去得到以当前点为出发点,可达到的最长序列的长度。分别向四个方向遍历,计算值就行。由于以当前点为出发点,可达到的最长序列的长度其实是确定的。所以我们可以记录一下每次的遍历结果,在下一次要进行遍历的时候,直接取用就行。

代码
#include <bits/stdc++.h>
using namespace std;

int a[101][101];
int n, m;

int dp[101][101];

int dir[4][2] = {{0,-1},{0,1},{1,0},{-1,0}};

void dfs(int x, int y) {
        int x1, y1;
        for(int i = 0; i < 4; ++i) {
            x1 = dir[i][0] + x;
            y1 = dir[i][1] + y;
            if(x1 >= 0 && x1 < n && y1 >= 0 && y1 < m) {
                if(a[x1][y1] < a[x][y]) { //可以到达
                    dfs(x1,y1);
                    dp[x][y] = max(dp[x][y], 1 + dp[x1][y1]);//选择最长的
                }
            }
        }
}

int main() {
    scanf("%d %d", &n, &m);
    for(int i = 0; i < n; ++i) {
        for(int j = 0; j < m; ++j) {
            scanf("%d", &a[i][j]);
        }
    }

    int ans = -1;//答案
    for(int i = 0; i < n; ++i) {
        for(int j = 0; j < m; ++j) {
            dfs(i,j);
            ans = max(ans, dp[i][j]);//每次记录结果
        }
    }
    printf("%d", ans+1);//由于长度没有算上初始点 这里再算上
    return  0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值