每日四题打卡-4.20:记忆化搜索-滑雪/状态压缩DP-蒙德里安的梦想/数位统计DP-计数问题/计数类DP-整数划分

记忆化搜索-滑雪

给定一个R行C列的矩阵,表示一个矩形网格滑雪场。

矩阵中第 i 行第 j 列的点表示滑雪场的第 i 行第 j 列区域的高度。

一个人从滑雪场中的某个区域内出发,每次可以向上下左右任意一个方向滑动一个单位距离。

当然,一个人能够滑动到某相邻区域的前提是该区域的高度低于自己目前所在区域的高度。

下面给出一个矩阵作为例子:

 1  2  3  4 5

16 17 18 19 6

15 24 25 20 7

14 23 22 21 8

13 12 11 10 9

在给定矩阵中,一条可行的滑行轨迹为24-17-2-1。

在给定矩阵中,最长的滑行轨迹为25-24-23-…-3-2-1,沿途共经过25个区域。

现在给定你一个二维矩阵表示滑雪场各区域的高度,请你找出在该滑雪场中能够完成的最长滑雪轨迹,并输出其长度(可经过最大区域数)。

输入格式

第一行包含两个整数R和C。

接下来R行,每行包含C个整数,表示完整的二维矩阵。

输出格式

输出一个整数,表示可完成的最长滑雪长度。

数据范围

1≤R,C≤3001≤R,C≤300,
0≤矩阵中整数≤100000≤矩阵中整数≤10000

输入样例:

5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9

输出样例:

25

思路:从中间开始滑,从大到小最多能滑25个格子。

状态表示:

集合:f[i][j]表示状态,从f[i][j]开始滑,所有表示从i,j开始滑的所有路径。属性:max

状态计算:就是搜索,每个点能不能向上下左右动

下面代码中的f[x][y] = max(f[x][y],dp(xx,yy)+1);
实际上就是向四个方向判断之后转移:
if(a[i-1][j]<now) f[i][j] = max(f[i][j],f[i-1][j]+1);//上
if(a[i+1][j]<now) f[i][j] = max(f[i][j],f[i+1][j]+1);//下
if(a[i][j-1]<now) f[i][j] = max(f[i][j],f[i][j-1]+1);//左
if(a[i][j+1]<now) f[i][j] = max(f[i][j],f[i][j+1]+1);//右

#include <bits/stdc++.h>
#define read(x) scanf("%d", &x)
using namespace std;
const int N = 310;
int n, m, a[N][N], f[N][N];
int dx[4] = {-1,0,1,0};
int dy[4] = {0,1,0,-1};

int dp(int x, int y)
{
    if (f[x][y] != 0) return f[x][y];
    f[x][y] = 1;
    for (int i = 0; i < 4; i ++)
    {
        int xx = x + dx[i];
        int yy = y + dy[i];
        //if(xx>=1&&xx<=n && yy>=1&&y<=m && a[x][y]>a[xx][yy])
        if (xx >= 1 && xx <= n && yy >= 1 && y <= m && a[x][y] > a[xx][yy])
            f[x][y] = max(f[x][y], dp(xx, yy) + 1);
    }
    for(register int i=0; i<4; i++) {
        int xx = x+dx[i];
        int yy = y+dy[i];
        if(xx>=1&&xx<=n && yy>=1&&y<=m && a[x][y]>a[xx][yy])
            f[x][y] = max(f[x][y],dp(xx,yy)+1);
    }
    return f[x][y];
}


int main()
{
    read(n),read(m);
    for(register int i=1; i<=n; i++)
        for(register int j=1; j<=m; j++)
            read(a[i][j]);
    int ans = 0;
    for (int i = 1; i <= n; i ++)
        for (int j = 1; j <= m; j ++)
            ans = max(ans, dp(i, j));
    
    cout << ans << endl;
    return 0;
}

状态压缩DP-蒙德里安的梦想

求把N*M的棋盘分割成若干个1*2的的长方形,有多少种方案。

例如当N=2,M=4时,共有5种方案。当N=2,M=3时,共有3种方案。

如下图所示:

2411_1.jpg

输入格式

输入包含多组测试用例。

每组测试用例占一行,包含两个整数N和M。

当输入用例N=0,M=0时,表示输入终止,且该用例无需处理。

输出格式

每个测试用例输出一个结果,每个结果占一行。

数据范围

1≤N,M≤111≤N,M≤11

输入样例:

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

输出样例:

1
0
1
2
3
5
144
51205

思路:

1、所谓的状态压缩DP,就是用二进制数保存状态。为什么不直接用数组记录呢?因为用一个二进制数记录方便作位运算。前面做过的八皇后,八数码,也用到了状态压缩。

 2. 本题等价于找到所有横放 1 X 2 小方格的方案数,因为所有横放确定了,那么竖放方案是唯一的。

 3. 用f[i][j]记录第i列第j个状态。j状态位等于1表示上一列有横放格子,本列有格子捅出来。转移方程很简单,本列的每一个状态都由上列所有“合法”状态转移过来f[i][j] += f[i - 1][k]

 4. 两个转移条件: i 列和 i - 1列同一行不同时捅出来 ; 本列捅出来的状态j和上列捅出来的状态k求或,得到上列是否为奇数空行状态,奇数空行不转移。

 5. 初始化条件f[0][0] = 1,第0列只能是状态0,无任何格子捅出来。返回f[m][0]。第m + 1列不能有东西捅出来。
 

#include<bits/stdc++.h>
using namespace std;
const int N = 12, M = 1 << N;
int st[M];
long long f[N][M];
 
 
int main(){
    int n, m;
    while (cin >> n >> m && (n || m)){
 
        for (int i = 0; i < 1 << n; i ++){
            int cnt = 0;
            st[i] = true;
            for (int j = 0; j < n; j ++)
                if (i >> j & 1){
                    if (cnt & 1) st[i] = false; // cnt 为当前已经存在多少个连续的0
                    cnt = 0;
                }
                else cnt ++;
            if (cnt & 1) st[i] = false; // 扫完后要判断一下最后一段有多少个连续的0
        }
 
        memset(f, 0, sizeof f);
        f[0][0] = 1;
        for (int i = 1; i <= m; i ++)
            for (int j = 0; j < 1 << n; j ++)
                for (int k = 0; k < 1 << n; k ++)
                    if ((j & k) == 0 && (st[j | k])) 
                    // j & k == 0 表示 i 列和 i - 1列同一行不同时捅出来
                    // st[j | k] == 1 表示 在 i 列状态 j, i - 1 列状态 k 的情况下是合法的.
                        f[i][j] += f[i - 1][k];      
        cout << f[m][0] << endl;
    }
    return 0;
}

数位统计DP-计数问题

试计算在区间1到n的所有整数中,数字x共出现了多少次?

例如,在1到11中,即在1、2、3、4、5、6、7、8、9、10、11中,数字1出现了4次。

输入格式

输入共1行,包含2个整数n、x,之间用一个空格隔开。

输出格式

输出共1行,包含一个整数,表示x出现的次数。

数据范围

1≤n≤1061≤n≤106,
0≤x≤90≤x≤9

输入样例:

11 1

输出样例:

4

思路:
(枚举) O(nlogn)O(nlogn)
直接枚举 1 到 n 中的每个数,再依次判断每一位是否等于 x 即可。

时间复杂度
从 1 到 n 一共有 n 个数,每个数有 logn 位,因此总时间复杂度是 O(nlogn)。

#include <iostream>

using namespace std;


int main()
{
    int n, x;
    cin >> n >> x;
    int res = 0;
    for (int i = 1; i <= n; i ++)
        for (int j = i; j; j/= 10)
            if (j % 10 == x)
                res ++;
    cout << res << endl;
    return 0;
}

计数类DP-整数划分

一个正整数nn可以表示成若干个正整数之和,形如:n=n1+n2+…+nkn=n1+n2+…+nk,其中n1≥n2≥…≥nk,k≥1n1≥n2≥…≥nk,k≥1。

我们将这样的一种表示称为正整数n的一种划分。

现在给定一个正整数n,请你求出n共有多少种不同的划分方法。

输入格式

共一行,包含一个整数n。

输出格式

共一行,包含一个整数,表示总划分数量。

由于答案可能很大,输出结果请对109+7109+7取模。

数据范围

1≤n≤10001≤n≤1000

输入样例:

5

输出样例:

7

思路:比如:5,有七种表示方式

n中的数可以使用无限次,所以可以把它看成完全背包问题。先回顾一下完全背包具体做法:

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010, mod = 1e9 + 7;
int n;
int f[N];//存所有状态
int main()
{
    cin >> n;
    f[0] = 1;
    for (int i = 1; i <= n; i ++)
        for(int j = i; j <= n; j ++)//j是容量
            f[j] = (f[j] + f[j - i]) % mod;
    cout << f[n] << endl;
    return 0;
}

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值