问题:
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
输入:
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
输出:
对每个测试用例,在1行里输出最少还需要建设的道路数目。
样例输入:
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
样例输出:
1
0
2
998
///最小生成树
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int f[10001];
struct BBQ ///节点与节点之间的路长用结构体来储存
{
int a,b,c;
};
bool cmp(BBQ x,BBQ y)
{
return x.c<y.c;
}
int fin(int n) ///寻找某一节点的源头节点
{
if(f[n]==n)
{
return n;
}
else
{
f[n]=fin(f[n]);
return f[n];
}
}
int merg(int u,int v) ///合并两个不相连的节点
{
int t1,t2;
t1=fin(u);
t2=fin(v);
if(t1!=t2)
{
f[t2]=t1;
return 1;
}
else
{
return 0;
}
}
int main()
{
int n,m;
while(scanf("%d",&n,&m)!=EOF&&n!=0) ///n为节点数 m为路的数量
{
BBQ e[m+5];
for(int i=1; i<=m; i++)
{
scanf("%d %d %d",&e[i].a,&e[i].b,&e[i].c); ///每次输入两个节点的名字+路长
}
sort(e+1,e+m+1,cmp);
int sum,ans;
sum=ans=0; ///ans用来记录已构建多少条路
for(int i=1; i<=n; i++)
{
f[i]=i;
}
for(int i=1; i<=m; i++)
{
if(merg(e[i].a,e[i].b))
{
ans++;
sum=sum+e[i].c;
}
if(ans==n-1)
{
break;
}
}
printf("%d\n",sum);
}
return 0;
}