畅通工程 最小生成树

问题:

某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?

输入:

测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。

输出:

对每个测试用例,在1行里输出最少还需要建设的道路数目。

样例输入:

4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0

样例输出:

1
0
2
998




///最小生成树   





#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int f[10001];
struct BBQ                           ///节点与节点之间的路长用结构体来储存
{
    int a,b,c;
};
bool cmp(BBQ x,BBQ y)
{
    return x.c<y.c;
}
int fin(int n)                            ///寻找某一节点的源头节点
{
    if(f[n]==n)
    {
        return n;
    }
    else
    {
        f[n]=fin(f[n]);
        return f[n];
    }

}
int merg(int u,int v)                    ///合并两个不相连的节点
{
    int t1,t2;
    t1=fin(u);
    t2=fin(v);
    if(t1!=t2)
    {
        f[t2]=t1;
        return 1;
    }
    else
    {
        return 0;
    }
}
int main()
{
    int n,m;
    while(scanf("%d",&n,&m)!=EOF&&n!=0)                     ///n为节点数   m为路的数量
    {
        BBQ e[m+5];
        for(int i=1; i<=m; i++)
        {
            scanf("%d %d %d",&e[i].a,&e[i].b,&e[i].c);           ///每次输入两个节点的名字+路长
        }
        sort(e+1,e+m+1,cmp);
        int sum,ans;
        sum=ans=0;                                            ///ans用来记录已构建多少条路
        for(int i=1; i<=n; i++)
        {
            f[i]=i;
        }
        for(int i=1; i<=m; i++)
        {
            if(merg(e[i].a,e[i].b))
            {
                ans++;
                sum=sum+e[i].c;
            }
            if(ans==n-1)
            {
                break;
            }
        }
        printf("%d\n",sum);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值