ZOJ - 3329 One Person Game (概率dp)

题目链接:
https://vjudge.net/contest/170340#problem/C

题目大意:
有三个骰子,分别为 k1,k2,k3 面,同时,存在 a,b,c ,当三个骰子的点数恰好依次是 a,b,c 时,得分归零,否则得到三个骰子点数总和的分,求得分大于n的期望轮数是多少

分析:
概率正推,期望逆推,如果没有归零的条件,显然可以用dp[i]表示当前得分为i,到达目标的期望,写出dp转移式

dp[i]=k=3k<=k1+k2+k3dp[i+k]pk+1

pk 表示得到k分的概率,那么加上归零这个条件,写出的转移式则应该是

dp[i]=k=3kk1+k2+k3dp[i+k]pk+dp[0]p0+1

而dp[0]就是我们所需要求的答案,是一个常数,在dp的过程中每一项都出现,所以可以将dp[0]设为未知量,则dp[i]都仅与dp[0]有关,设dp[i]

dp[i]=A[i]dp[0]+B[i]

最后将该式代入原转移式,得到

dp[i]=k=3kk1+k2+k3(A[i+k]dp[0]+B[i+k])pk+dp[0]p0+1

联立两式,显然又
A[i]=k=3kk1+k2+k3A[i+k]pk+p0

B[i]=k=3kk1+k2+k3B[i+k]pk+1

最后根据

dp[0]=A[0]dp[0]+B[0]

即可解得答案

代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#define inf 0x3fffffff
using namespace std;




double dp[200];
double A[600],B[600];
int n,k1,k2,k3,a,b,c;

int main()
{
    int T;
    scanf("%d",&T);
    while (T--)
    {
        memset(dp,0,sizeof(dp));
        memset(A,0,sizeof(A));
        memset(B,0,sizeof(B));
        scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
        dp[0] = 1.0/k1/k2/k3;
        for (int i = 1 ; i <= k1 ; i ++)
        {
            for (int j = 1 ; j <= k2 ; j ++)
            {
                for (int k = 1 ; k <= k3 ; k++)
                {
                    if (i==a&&j==b&&k==c)
                        continue;
                    dp[i+j+k] += dp[0];
                }
            }
        }
        for (int i = n  ; i >= 0 ; i --)
        {
            for (int j = 3 ; j <= k1+k2+k3 ; j ++)
            {
                A[i]+= A[i+j]*dp[j]; 
                B[i]+= B[i+j]*dp[j];
            }
            A[i]+=dp[0];
            B[i]+=1;
        }
        printf("%.12f\n",B[0]/(1-A[0]));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值