设置

import tensorflow as tf
from tensorflow import keras


​Layer​ 类:状态(权重)和部分计算的组合

Keras 的一个中心抽象是 ​​Layer​​ 类。层封装了状态(层的“权重”)和从输入到输出的转换(“调用”,即层的前向传递)。

下面是一个密集连接的层。它具有一个状态:变量 ​​w​​ 和 ​​b​​。

class Linear(keras.layers.Layer):
    def __init__(self, units=32, input_dim=32):
        super(Linear, self).__init__()
        w_init = tf.random_normal_initializer()
        self.w = tf.Variable(
            initial_value=w_init(shape=(input_dim, units), dtype="float32"),
            trainable=True,
        )
        b_init = tf.zeros_initializer()
        self.b = tf.Variable(
            initial_value=b_init(shape=(units,), dtype="float32"), trainable=True
        )

    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b


您可以在某些张量输入上通过调用来使用层,这一点很像 Python 函数。

x = tf.ones((2, 2))
linear_layer = Linear(4, 2)
y = linear_layer(x)
print(y)


2021-08-13 19:58:32.393148: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-13 19:58:32.401011: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-13 19:58:32.401904: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-13 19:58:32.403509: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-08-13 19:58:32.404028: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-13 19:58:32.404900: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-13 19:58:32.405739: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-13 19:58:32.975828: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-13 19:58:32.976731: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-13 19:58:32.977545: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-13 19:58:32.978384: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 14648 MB memory: -> device: 0, name: Tesla V100-SXM2-16GB, pci bus id: 0000:00:05.0, compute capability: 7.0
tf.Tensor(
[[ 0.04646244 0.18147472 -0.03977904 -0.01213008]
[ 0.04646244 0.18147472 -0.03977904 -0.01213008]], shape=(2, 4), dtype=float32)

请注意,权重 ​​w​​ 和 ​​b​​ 在被设置为层特性后会由层自动跟踪:

assert linear_layer.weights == [linear_layer.w, linear_layer.b]


请注意,您还可以使用一种更加快捷的方式为层添加权重:​​add_weight()​​ 方法:

class Linear(keras.layers.Layer):
    def __init__(self, units=32, input_dim=32):
        super(Linear, self).__init__()
        self.w = self.add_weight(
            shape=(input_dim, units), initializer="random_normal", trainable=True
        )
        self.b = self.add_weight(shape=(units,), initializer="zeros", trainable=True)

    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b


x = tf.ones((2, 2))
linear_layer = Linear(4, 2)
y = linear_layer(x)
print(y)


tf.Tensor(
[[-0.03581849 0.09276912 0.03415143 0.02351041]
[-0.03581849 0.09276912 0.03415143 0.02351041]], shape=(2, 4), dtype=float32)

层可以具有不可训练权重

除了可训练权重外,您还可以向层添加不可训练权重。训练层时,不必在反向传播期间考虑此类权重。

以下是添加和使用不可训练权重的方式:

class ComputeSum(keras.layers.Layer):
    def __init__(self, input_dim):
        super(ComputeSum, self).__init__()
        self.total = tf.Variable(initial_value=tf.zeros((input_dim,)), trainable=False)

    def call(self, inputs):
        self.total.assign_add(tf.reduce_sum(inputs, axis=0))
        return self.total


x = tf.ones((2, 2))
my_sum = ComputeSum(2)
y = my_sum(x)
print(y.numpy())
y = my_sum(x)
print(y.numpy())


[2. 2.]
[4. 4.]

它是 ​​layer.weights​​ 的一部分,但被归类为不可训练权重:

print("weights:", len(my_sum.weights))
print("non-trainable weights:", len(my_sum.non_trainable_weights))

# It's not included in the trainable weights:
print("trainable_weights:", my_sum.trainable_weights)


weights: 1
non-trainable weights: 1
trainable_weights: []

最佳做法:将权重创建推迟到得知输入的形状之后

上面的 ​​Linear​​ 层接受了一个 ​​input_dim​​ 参数,用于计算 ​​__init__()​​ 中权重 ​​w​​ 和 ​​b​​ 的形状:

class Linear(keras.layers.Layer):
    def __init__(self, units=32, input_dim=32):
        super(Linear, self).__init__()
        self.w = self.add_weight(
            shape=(input_dim, units), initializer="random_normal", trainable=True
        )
        self.b = self.add_weight(shape=(units,), initializer="zeros", trainable=True)

    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b


在许多情况下,您可能事先不知道输入的大小,并希望在得知该值时(对层进行实例化后的某个时间)再延迟创建权重。

在 Keras API 中,我们建议您在层的 ​​build(self, inputs_shape)​​ 方法中创建层权重。如下所示:

class Linear(keras.layers.Layer):
    def __init__(self, units=32):
        super(Linear, self).__init__()
        self.units = units

    def build(self, input_shape):
        self.w = self.add_weight(
            shape=(input_shape[-1], self.units),
            initializer="random_normal",
            trainable=True,
        )
        self.b = self.add_weight(
            shape=(self.units,), initializer="random_normal", trainable=True
        )

    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b


层的 ​​__call__()​​ 方法将在首次调用时自动运行构建。现在,您有了一个延迟并因此更易使用的层:

# At instantiation, we don't know on what inputs this is going to get called
linear_layer = Linear(32)

# The layer's weights are created dynamically the first time the layer is called
y = linear_layer(x)


层可递归组合

如果将层实例分配为另一个层的特性,则外部层将开始跟踪内部层的权重。

我们建议在 ​​__init__()​​ 方法中创建此类子层(由于子层通常具有构建方法,它们将与外部层同时构建)。

# Let's assume we are reusing the Linear class
# with a `build` method that we defined above.


class MLPBlock(keras.layers.Layer):
    def __init__(self):
        super(MLPBlock, self).__init__()
        self.linear_1 = Linear(32)
        self.linear_2 = Linear(32)
        self.linear_3 = Linear(1)

    def call(self, inputs):
        x = self.linear_1(inputs)
        x = tf.nn.relu(x)
        x = self.linear_2(x)
        x = tf.nn.relu(x)
        return self.linear_3(x)


mlp = MLPBlock()
y = mlp(tf.ones(shape=(3, 64)))  # The first call to the `mlp` will create the weights
print("weights:", len(mlp.weights))
print("trainable weights:", len(mlp.trainable_weights))


weights: 6
trainable weights: 6

​add_loss()​ 方法

在编写层的 ​​call()​​ 方法时,您可以在编写训练循环时创建想要稍后使用的损失张量。这可以通过调用 ​​self.add_loss(value)​​ 来实现:

# A layer that creates an activity regularization loss
class ActivityRegularizationLayer(keras.layers.Layer):
    def __init__(self, rate=1e-2):
        super(ActivityRegularizationLayer, self).__init__()
        self.rate = rate

    def call(self, inputs):
        self.add_loss(self.rate * tf.reduce_sum(inputs))
        return inputs


这些损失(包括由任何内部层创建的损失)可通过 ​​layer.losses​​ 取回。此属性会在每个 ​​__call__()​​ 开始时重置到顶层,因此 ​​layer.losses​​ 始终包含在上一次前向传递过程中创建的损失值。

class OuterLayer(keras.layers.Layer):
    def __init__(self):
        super(OuterLayer, self).__init__()
        self.activity_reg = ActivityRegularizationLayer(1e-2)

    def call(self, inputs):
        return self.activity_reg(inputs)


layer = OuterLayer()
assert len(layer.losses) == 0  # No losses yet since the layer has never been called

_ = layer(tf.zeros(1, 1))
assert len(layer.losses) == 1  # We created one loss value

# `layer.losses` gets reset at the start of each __call__
_ = layer(tf.zeros(1, 1))
assert len(layer.losses) == 1  # This is the loss created during the call above


此外,​​loss​​ 属性还包含为任何内部层的权重创建的正则化损失:

class OuterLayerWithKernelRegularizer(keras.layers.Layer):
    def __init__(self):
        super(OuterLayerWithKernelRegularizer, self).__init__()
        self.dense = keras.layers.Dense(
            32, kernel_regularizer=tf.keras.regularizers.l2(1e-3)
        )

    def call(self, inputs):
        return self.dense(inputs)


layer = OuterLayerWithKernelRegularizer()
_ = layer(tf.zeros((1, 1)))

# This is `1e-3 * sum(layer.dense.kernel ** 2)`,
# created by the `kernel_regularizer` above.
print(layer.losses)


[<tf.Tensor: shape=(), dtype=float32, numpy=0.0013762739>]

在编写训练循环时应考虑这些损失,如下所示:

# Instantiate an optimizer.
optimizer = tf.keras.optimizers.SGD(learning_rate=1e-3)
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)

# Iterate over the batches of a dataset.
for x_batch_train, y_batch_train in train_dataset:
  with tf.GradientTape() as tape:
    logits = layer(x_batch_train)  # Logits for this minibatch
    # Loss value for this minibatch
    loss_value = loss_fn(y_batch_train, logits)
    # Add extra losses created during this forward pass:
    loss_value += sum(model.losses)

  grads = tape.gradient(loss_value, model.trainable_weights)
  optimizer.apply_gradients(zip(grads, model.trainable_weights))


有关编写训练循环的详细指南,请参阅​​从头开始编写训练循环​​指南。

这些损失还可以无缝使用 ​​fit()​​(它们会自动求和并添加到主损失中,如果有):

import numpy as np

inputs = keras.Input(shape=(3,))
outputs = ActivityRegularizationLayer()(inputs)
model = keras.Model(inputs, outputs)

# If there is a loss passed in `compile`, the regularization
# losses get added to it
model.compile(optimizer="adam", loss="mse")
model.fit(np.random.random((2, 3)), np.random.random((2, 3)))

# It's also possible not to pass any loss in `compile`,
# since the model already has a loss to minimize, via the `add_loss`
# call during the forward pass!
model.compile(optimizer="adam")
model.fit(np.random.random((2, 3)), np.random.random((2, 3)))


1/1 [==============================] - 0s 99ms/step - loss: 0.0991
1/1 [==============================] - 0s 42ms/step - loss: 0.0228
2021-08-13 19:58:33.977054: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)
<keras.callbacks.History at 0x7fcc643809d0>

​add_metric()​ 方法

与 ​​add_loss()​​ 类似,层还具有 ​​add_metric()​​ 方法,用于在训练过程中跟踪数量的移动平均值。

请思考下面的 "logistic endpoint" 层。它将预测和目标作为输入,计算通过 ​​add_loss()​​ 跟踪的损失,并计算通过 ​​add_metric()​​ 跟踪的准确率标量。

class LogisticEndpoint(keras.layers.Layer):
    def __init__(self, name=None):
        super(LogisticEndpoint, self).__init__(name=name)
        self.loss_fn = keras.losses.BinaryCrossentropy(from_logits=True)
        self.accuracy_fn = keras.metrics.BinaryAccuracy()

    def call(self, targets, logits, sample_weights=None):
        # Compute the training-time loss value and add it
        # to the layer using `self.add_loss()`.
        loss = self.loss_fn(targets, logits, sample_weights)
        self.add_loss(loss)

        # Log accuracy as a metric and add it
        # to the layer using `self.add_metric()`.
        acc = self.accuracy_fn(targets, logits, sample_weights)
        self.add_metric(acc, name="accuracy")

        # Return the inference-time prediction tensor (for `.predict()`).
        return tf.nn.softmax(logits)


可通过 ​​layer.metrics​​ 访问以这种方式跟踪的指标:

layer = LogisticEndpoint()

targets = tf.ones((2, 2))
logits = tf.ones((2, 2))
y = layer(targets, logits)

print("layer.metrics:", layer.metrics)
print("current accuracy value:", float(layer.metrics[0].result()))


layer.metrics: [<keras.metrics.BinaryAccuracy object at 0x7fcd1c589690>]
current accuracy value: 1.0

和 ​​add_loss()​​ 一样,这些指标也是通过 ​​fit()​​ 跟踪的:

inputs = keras.Input(shape=(3,), name="inputs")
targets = keras.Input(shape=(10,), name="targets")
logits = keras.layers.Dense(10)(inputs)
predictions = LogisticEndpoint(name="predictions")(logits, targets)

model = keras.Model(inputs=[inputs, targets], outputs=predictions)
model.compile(optimizer="adam")

data = {
    "inputs": np.random.random((3, 3)),
    "targets": np.random.random((3, 10)),
}
model.fit(data)


1/1 [==============================] - 0s 230ms/step - loss: 1.0306 - binary_accuracy: 0.0000e+00
<keras.callbacks.History at 0x7fcc6437cd10>

可选择在层上启用序列化

如果需要将自定义层作为​​函数式模型​​的一部分进行序列化,您可以选择实现 ​​get_config()​​ 方法:

class Linear(keras.layers.Layer):
    def __init__(self, units=32):
        super(Linear, self).__init__()
        self.units = units

    def build(self, input_shape):
        self.w = self.add_weight(
            shape=(input_shape[-1], self.units),
            initializer="random_normal",
            trainable=True,
        )
        self.b = self.add_weight(
            shape=(self.units,), initializer="random_normal", trainable=True
        )

    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b

    def get_config(self):
        return {"units": self.units}


# Now you can recreate the layer from its config:
layer = Linear(64)
config = layer.get_config()
print(config)
new_layer = Linear.from_config(config)


{'units': 64}

请注意,基础 ​​Layer​​ 类的 ​​__init__()​​ 方法会接受一些关键字参数,尤其是 ​​name​​ 和 ​​dtype​​。最好将这些参数传递给 ​​__init__()​​ 中的父类,并将其包含在层配置中:

class Linear(keras.layers.Layer):
    def __init__(self, units=32, **kwargs):
        super(Linear, self).__init__(**kwargs)
        self.units = units

    def build(self, input_shape):
        self.w = self.add_weight(
            shape=(input_shape[-1], self.units),
            initializer="random_normal",
            trainable=True,
        )
        self.b = self.add_weight(
            shape=(self.units,), initializer="random_normal", trainable=True
        )

    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b

    def get_config(self):
        config = super(Linear, self).get_config()
        config.update({"units": self.units})
        return config


layer = Linear(64)
config = layer.get_config()
print(config)
new_layer = Linear.from_config(config)


{'name': 'linear_8', 'trainable': True, 'dtype': 'float32', 'units': 64}

如果根据层的配置对层进行反序列化时需要更大的灵活性,还可以重写 ​​from_config()​​ 类方法。下面是 ​​from_config()​​ 的基础实现:

def from_config(cls, config):
  return cls(**config)


要详细了解序列化和保存,请参阅完整的​​保存和序列化模型​​指南。

​call()​ 方法中的特权 ​training​ 参数

某些层,尤其是 ​​BatchNormalization​​ 层和 ​​Dropout​​ 层,在训练和推断期间具有不同的行为。对于此类层,标准做法是在 ​​call()​​ 方法中公开 ​​training​​(布尔)参数。

通过在 ​​call()​​ 中公开此参数,可以启用内置的训练和评估循环(例如 ​​fit()​​)以在训练和推断中正确使用层。

class CustomDropout(keras.layers.Layer):
    def __init__(self, rate, **kwargs):
        super(CustomDropout, self).__init__(**kwargs)
        self.rate = rate

    def call(self, inputs, training=None):
        if training:
            return tf.nn.dropout(inputs, rate=self.rate)
        return inputs


​call()​ 方法中的特权 ​mask​ 参数

​call()​​ 支持的另一个特权参数是 ​​mask​​ 参数。

它会出现在所有 Keras RNN 层中。掩码是布尔张量(在输入中每个时间步骤对应一个布尔值),用于在处理时间序列数据时跳过某些输入时间步骤。

当先前的层生成掩码时,Keras 会自动将正确的 ​​mask​​ 参数传递给 ​​__call__()​​(针对支持它的层)。掩码生成层是配置了 ​​mask_zero=True​​ 的 ​​Embedding​​ 层和 ​​Masking​​ 层。

要详细了解遮盖以及如何编写启用遮盖的层,请查看​​了解填充和遮盖​​指南。

​Model​ 

通常,您会使用 ​​Layer​​ 类来定义内部计算块,并使用 ​​Model​​ 类来定义外部模型,即您将训练的对象。

例如,在 ResNet50 模型中,您会有几个子类化 ​​Layer​​ 的 ResNet 块,以及一个包含整个 ResNet50 网络的 ​​Model​​。

​Model​​ 类具有与 ​​Layer​​ 相同的 API,但有如下区别:

  • 它会公开内置训练、评估和预测循环(​​model.fit()​​​、​​model.evaluate()​​​、​​model.predict()​​)。
  • 它会通过 ​​model.layers​​ 属性公开其内部层的列表。
  • 它会公开保存和序列化 API(​​save()​​​、​​save_weights()​​…)

实际上,​​Layer​​ 类对应于我们在文献中所称的“层”(如“卷积层”或“循环层”)或“块”(如“ResNet 块”或“Inception 块”)。

同时,​​Model​​ 类对应于文献中所称的“模型”(如“深度学习模型”)或“网络”(如“深度神经网络”)。

因此,如果您想知道“我应该用 ​​Layer​​ 类还是 ​​Model​​ 类?”,请问自己:我是否需要在它上面调用 ​​fit()​​?我是否需要在它上面调用 ​​save()​​?如果是,则使用 ​​Model​​。如果不是(要么因为您的类只是更大系统中的一个块,要么因为您正在自己编写训练和保存代码),则使用 ​​Layer​​。

例如,我们可以使用上面的 mini-resnet 示例,用它来构建一个 ​​Model​​,该模型可以通过 ​​fit()​​ 进行训练,并通过 ​​save_weights()​​ 进行保存:

class ResNet(tf.keras.Model):

    def __init__(self, num_classes=1000):
        super(ResNet, self).__init__()
        self.block_1 = ResNetBlock()
        self.block_2 = ResNetBlock()
        self.global_pool = layers.GlobalAveragePooling2D()
        self.classifier = Dense(num_classes)

    def call(self, inputs):
        x = self.block_1(inputs)
        x = self.block_2(x)
        x = self.global_pool(x)
        return self.classifier(x)


resnet = ResNet()
dataset = ...
resnet.fit(dataset, epochs=10)
resnet.save(filepath)


汇总:端到端示例

到目前为止,您已学习以下内容:

  • ​Layer​​ 封装了状态(在 ​​__init__()​​ 或 ​​build()​​ 中创建)和一些计算(在 ​​call()​​ 中定义)。
  • 层可以递归嵌套以创建新的更大的计算块。
  • 层可以通过 ​​add_loss()​​ 和 ​​add_metric()​​ 创建并跟踪损失(通常是正则化损失)以及指标。
  • 您要训练的外部容器是 ​​Model​​​。​​Model​​ 就像 ​​Layer​​,但是添加了训练和序列化实用工具。

让我们将这些内容全部汇总到一个端到端示例:我们将实现一个变分自动编码器 (VAE),并用 MNIST 数字对其进行训练。

我们的 VAE 将是 ​​Model​​ 的一个子类,它是作为子类化 ​​Layer​​ 的嵌套组合层进行构建的。它将具有正则化损失(KL 散度)。

from tensorflow.keras import layers


class Sampling(layers.Layer):
    """Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""

    def call(self, inputs):
        z_mean, z_log_var = inputs
        batch = tf.shape(z_mean)[0]
        dim = tf.shape(z_mean)[1]
        epsilon = tf.keras.backend.random_normal(shape=(batch, dim))
        return z_mean + tf.exp(0.5 * z_log_var) * epsilon


class Encoder(layers.Layer):
    """Maps MNIST digits to a triplet (z_mean, z_log_var, z)."""

    def __init__(self, latent_dim=32, intermediate_dim=64, name="encoder", **kwargs):
        super(Encoder, self).__init__(name=name, **kwargs)
        self.dense_proj = layers.Dense(intermediate_dim, activation="relu")
        self.dense_mean = layers.Dense(latent_dim)
        self.dense_log_var = layers.Dense(latent_dim)
        self.sampling = Sampling()

    def call(self, inputs):
        x = self.dense_proj(inputs)
        z_mean = self.dense_mean(x)
        z_log_var = self.dense_log_var(x)
        z = self.sampling((z_mean, z_log_var))
        return z_mean, z_log_var, z


class Decoder(layers.Layer):
    """Converts z, the encoded digit vector, back into a readable digit."""

    def __init__(self, original_dim, intermediate_dim=64, name="decoder", **kwargs):
        super(Decoder, self).__init__(name=name, **kwargs)
        self.dense_proj = layers.Dense(intermediate_dim, activation="relu")
        self.dense_output = layers.Dense(original_dim, activation="sigmoid")

    def call(self, inputs):
        x = self.dense_proj(inputs)
        return self.dense_output(x)


class VariationalAutoEncoder(keras.Model):
    """Combines the encoder and decoder into an end-to-end model for training."""

    def __init__(
        self,
        original_dim,
        intermediate_dim=64,
        latent_dim=32,
        name="autoencoder",
        **kwargs
    ):
        super(VariationalAutoEncoder, self).__init__(name=name, **kwargs)
        self.original_dim = original_dim
        self.encoder = Encoder(latent_dim=latent_dim, intermediate_dim=intermediate_dim)
        self.decoder = Decoder(original_dim, intermediate_dim=intermediate_dim)

    def call(self, inputs):
        z_mean, z_log_var, z = self.encoder(inputs)
        reconstructed = self.decoder(z)
        # Add KL divergence regularization loss.
        kl_loss = -0.5 * tf.reduce_mean(
            z_log_var - tf.square(z_mean) - tf.exp(z_log_var) + 1
        )
        self.add_loss(kl_loss)
        return reconstructed


让我们在 MNIST 上编写一个简单的训练循环:

original_dim = 784
vae = VariationalAutoEncoder(original_dim, 64, 32)

optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
mse_loss_fn = tf.keras.losses.MeanSquaredError()

loss_metric = tf.keras.metrics.Mean()

(x_train, _), _ = tf.keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype("float32") / 255

train_dataset = tf.data.Dataset.from_tensor_slices(x_train)
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64)

epochs = 2

# Iterate over epochs.
for epoch in range(epochs):
    print("Start of epoch %d" % (epoch,))

    # Iterate over the batches of the dataset.
    for step, x_batch_train in enumerate(train_dataset):
        with tf.GradientTape() as tape:
            reconstructed = vae(x_batch_train)
            # Compute reconstruction loss
            loss = mse_loss_fn(x_batch_train, reconstructed)
            loss += sum(vae.losses)  # Add KLD regularization loss

        grads = tape.gradient(loss, vae.trainable_weights)
        optimizer.apply_gradients(zip(grads, vae.trainable_weights))

        loss_metric(loss)

        if step % 100 == 0:
            print("step %d: mean loss = %.4f" % (step, loss_metric.result()))


Start of epoch 0
step 0: mean loss = 0.3553
step 100: mean loss = 0.1263
step 200: mean loss = 0.0996
step 300: mean loss = 0.0894
step 400: mean loss = 0.0844
step 500: mean loss = 0.0810
step 600: mean loss = 0.0789
step 700: mean loss = 0.0772
step 800: mean loss = 0.0761
step 900: mean loss = 0.0750
Start of epoch 1
step 0: mean loss = 0.0747
step 100: mean loss = 0.0741
step 200: mean loss = 0.0736
step 300: mean loss = 0.0731
step 400: mean loss = 0.0728
step 500: mean loss = 0.0723
step 600: mean loss = 0.0720
step 700: mean loss = 0.0718
step 800: mean loss = 0.0715
step 900: mean loss = 0.0712

请注意,由于 VAE 是 ​​Model​​ 的子类,它具有内置的训练循环。因此,您也可以用以下方式训练它:

vae = VariationalAutoEncoder(784, 64, 32)

optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)

vae.compile(optimizer, loss=tf.keras.losses.MeanSquaredError())
vae.fit(x_train, x_train, epochs=2, batch_size=64)


Epoch 1/2
938/938 [==============================] - 3s 2ms/step - loss: 0.0749
Epoch 2/2
938/938 [==============================] - 2s 2ms/step - loss: 0.0676
<keras.callbacks.History at 0x7fcc641e6dd0>

超越面向对象的开发:函数式 API

这个示例对您来说是否包含了太多面向对象的开发?您也可以使用​​函数式 API​​ 来构建模型。重要的是,选择其中一种样式并不妨碍您利用以另一种样式编写的组件:您随时可以搭配使用。

例如,下面的函数式 API 示例重用了我们在上面的示例中定义的同一个 ​​Sampling​​ 层:

original_dim = 784
intermediate_dim = 64
latent_dim = 32

# Define encoder model.
original_inputs = tf.keras.Input(shape=(original_dim,), name="encoder_input")
x = layers.Dense(intermediate_dim, activation="relu")(original_inputs)
z_mean = layers.Dense(latent_dim, name="z_mean")(x)
z_log_var = layers.Dense(latent_dim, name="z_log_var")(x)
z = Sampling()((z_mean, z_log_var))
encoder = tf.keras.Model(inputs=original_inputs, outputs=z, name="encoder")

# Define decoder model.
latent_inputs = tf.keras.Input(shape=(latent_dim,), name="z_sampling")
x = layers.Dense(intermediate_dim, activation="relu")(latent_inputs)
outputs = layers.Dense(original_dim, activation="sigmoid")(x)
decoder = tf.keras.Model(inputs=latent_inputs, outputs=outputs, name="decoder")

# Define VAE model.
outputs = decoder(z)
vae = tf.keras.Model(inputs=original_inputs, outputs=outputs, name="vae")

# Add KL divergence regularization loss.
kl_loss = -0.5 * tf.reduce_mean(z_log_var - tf.square(z_mean) - tf.exp(z_log_var) + 1)
vae.add_loss(kl_loss)

# Train.
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
vae.compile(optimizer, loss=tf.keras.losses.MeanSquaredError())
vae.fit(x_train, x_train, epochs=3, batch_size=64)


Epoch 1/3
938/938 [==============================] - 3s 2ms/step - loss: 0.0745
Epoch 2/3
938/938 [==============================] - 2s 2ms/step - loss: 0.0677
Epoch 3/3
938/938 [==============================] - 2s 2ms/step - loss: 0.0675
<keras.callbacks.History at 0x7fc8935f78d0>

有关详情,请务必阅读​​函数式 API​​ 指南。