【Codeforces】1658D1 388535 (Easy Version) 题解

题目大意

给定两个数 l , r l, r l,r,将 [ l , l + 1 , . . . , r − 1 , r ] [l, l + 1,..., r-1, r] [l,l+1,...,r1,r]的一个任意排列,全部异或 x x x,得到一个新的数组 a a a

给定 l , r l, r l,r a a a数组,求 x x x

其中 0 = l ≤ r ≤ 2 17 0 = l \le r \le 2^{17} 0=lr217

题目链接

思路

我们按位处理,我们计算异或前的数组每一位 1 1 1的个数,设为 c n t A cntA cntA,计算异或后的数组每一位 1 1 1的个数,记为 c n t B cntB cntB

  1. 那么一旦 c n t A i ! = c n t B i cntA_i != cntB_i cntAi!=cntBi,那么就说明 x x x这一位一定为 1 1 1

  2. 对于 c n t A i = = c n t B i cntA_i == cntB_i cntAi==cntBi一样的位数,说明这一位可以为 1 1 1,也可以为 0 0 0

因为 l = 0 l=0 l=0,所以2.总是成立,因为异或后的数组一定有一个 x x x,异或前有个 0 0 0,所以 x x x某一位为 1 1 1,那么异或后的数这一位 1 1 1的数量一定会变化。

而一旦 l ≠ 0 l \not = 0 l=0,那么就有可能 1 1 1变为 0 0 0, 0 0 0变为 1 1 1的数量相同,抵消掉了,比如 [ 1 , 2 ] ⊕ 2 = [ 0 , 3 ] [1,2] \oplus 2 = [0,3] [1,2]2=[0,3],前后每一位 1 1 1的数量都相同。

代码

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;

const int maxN = 1e5 + 7;

int T, l, r, cnt1[53], cnt2[53];

inline void calc(int *cnt, int x)
{
    int now = 0;
    while(x) {
        if(x & 1)
            cnt[now]++;
        now++; x >>= 1;
    }
}

int main()
{
    scanf("%d", &T);
    while(T--) {
        memset(cnt1, 0, sizeof cnt1);
        memset(cnt2, 0, sizeof cnt2);
        scanf("%d%d", &l, &r);
        for(int i = l; i <= r; ++i) {
            calc(cnt1, i);
            int x; scanf("%d", &x);
            calc(cnt2, x);
        }
        int ans = 0;
        for(int i = 0; i < 31; ++i)
            if(cnt1[i] != cnt2[i])
                ans |= (1 << i);
        printf("%d\n", ans);
    }
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值