[CQOI2007]余数求和 解题报告

[CQOI2007]余数求和 解题报告

题目描述

给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如G(10, 5)=5 mod 1 + 5 mod 2 + 5 mod 3 + 5 mod 4 + 5 mod 5 …… + 5 mod 10=0+1+2+1+0+5+5+5+5+5=29

输入输出格式

输入格式:

两个整数n k

输出格式:

答案

输入输出样例
input

10 5

output

29

说明

30%: n,k <= 1000

60%: n,k <= 10^6

100% n,k <= 10^9

思路:

首先知道一点a%b=a-a/b*b(/表示向下取整)。
所以ans=1+2+······+n-n/1-n/2-······-n/n;
然而硬算的话会超时。
所以要用到一种骚操作,叫做 除法分块!!!;
所以除法分块的原理就是,在向下取整的情况下很多是都是一样的!
比如:,10/4=2,10/5=0;
所以就有了这个骚操作:

 for(long long l=1,r,t;l<=n;l=r+1){
        t=k/l;
        if(t==0) r=n;
        else r=min(n,k/t);
    }

用t求出这个除以这个数向下取整相同的区间。

Codes:

#include<bits/stdc++.h>
using namespace std;

long long ans;
long long n,k;

int main()
{
    scanf("%lld%lld",&n,&k);
    ans=n*k;
    for(long long l=1,r,t;l<=n;l=r+1){
        t=k/l;
        if(t==0) r=n;
        else r=min(n,k/t);
        ans-=(t*(r-l+1)*(l+r)/2);
    }
    printf("%lld\n",ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值