省选专练 [CQOI2007]余数求和

14 篇文章 0 订阅
9 篇文章 0 订阅

好题啊!

这个题用了对莫比乌斯反演优化的思想。

  • 根据题目可以写出ans=\sum\limits_{i=1}^{n}k\%ians=i=1nk%i

  • 首先知道一点 a\%ba%b 可以表示为 a-b*\lfloor\frac{a}{b}\rfloorabba ,写过高精取模的人应该都知道

  • 所以 ans=\sum\limits_{i=1}^{n}k-i*\lfloor\frac{k}{i}\rfloor=n*k-\sum\limits_{i=1}^{n}i*\lfloor\frac{k}{i}\rfloorans=i=1nkiik=nki=1niik

  • 然后 \lfloor\frac{k}{i}\rfloorik 可以出发分块来做,\lfloor\frac{k}{i}\rfloorik 大约有\sqrt kk 种取值,所以时间复杂度O(\sqrt k)O(k)
  • 不要问我为什么是恰好根号k,我不会#滑稽

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
#define ll long long
ll n,k;
int main(){
//	freopen("test5.in","r",stdin);
//	freopen("test5.out","w",stdout);
	cin>>n>>k;
	ll ans=n*k;
	ll l=1;
	ll r;
	for(l=1;l<=n;l=r+1){
		if(k/l==0){
			r=n;
//			continue;
		}
		else{
			r=min((k/(k/l)),n);
		}
		ans-=(k/l)*(r-l+1)*(l+r)/2;
	}
	cout<<ans;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值