好题啊!
这个题用了对莫比乌斯反演优化的思想。
根据题目可以写出ans=\sum\limits_{i=1}^{n}k\%ians=i=1∑nk%i
首先知道一点 a\%ba%b 可以表示为 a-b*\lfloor\frac{a}{b}\rfloora−b∗⌊ba⌋ ,写过高精取模的人应该都知道
所以 ans=\sum\limits_{i=1}^{n}k-i*\lfloor\frac{k}{i}\rfloor=n*k-\sum\limits_{i=1}^{n}i*\lfloor\frac{k}{i}\rfloorans=i=1∑nk−i∗⌊ik⌋=n∗k−i=1∑ni∗⌊ik⌋
- 然后 \lfloor\frac{k}{i}\rfloor⌊ik⌋ 可以出发分块来做,\lfloor\frac{k}{i}\rfloor⌊ik⌋ 大约有\sqrt kk 种取值,所以时间复杂度O(\sqrt k)O(k)
- 不要问我为什么是恰好根号k,我不会#滑稽
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;
#define ll long long
ll n,k;
int main(){
// freopen("test5.in","r",stdin);
// freopen("test5.out","w",stdout);
cin>>n>>k;
ll ans=n*k;
ll l=1;
ll r;
for(l=1;l<=n;l=r+1){
if(k/l==0){
r=n;
// continue;
}
else{
r=min((k/(k/l)),n);
}
ans-=(k/l)*(r-l+1)*(l+r)/2;
}
cout<<ans;
}