兰顿蚂蚁

本文介绍了一种基于兰顿蚂蚁模型的计算机模拟程序,详细解释了兰顿蚂蚁的行为规则及其实现方法,并提供了一个具体的编程实例,用于演示如何通过编程手段模拟兰顿蚂蚁在不同初始条件下的行为轨迹。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

  历届试题 兰顿蚂蚁  
时间限制:1.0s   内存限制:256.0MB
    
问题描述


  兰顿蚂蚁,是于1986年,由克里斯·兰顿提出来的,属于细胞自动机的一种。

  平面上的正方形格子被填上黑色或白色。在其中一格正方形内有一只“蚂蚁”。
  蚂蚁的头部朝向为:上下左右其中一方。

  蚂蚁的移动规则十分简单:
  若蚂蚁在黑格,右转90度,将该格改为白格,并向前移一格;
  若蚂蚁在白格,左转90度,将该格改为黑格,并向前移一格。

  规则虽然简单,蚂蚁的行为却十分复杂。刚刚开始时留下的路线都会有接近对称,像是会重复,但不论起始状态如何,蚂蚁经过漫长的混乱活动后,会开辟出一条规则的“高速公路”。

  蚂蚁的路线是很难事先预测的。

  你的任务是根据初始状态,用计算机模拟兰顿蚂蚁在第n步行走后所处的位置。
输入格式
  输入数据的第一行是 m n 两个整数(3 < m, n < 100),表示正方形格子的行数和列数。
  接下来是 m 行数据。
  每行数据为 n 个被空格分开的数字。0 表示白格,1 表示黑格。

  接下来是一行数据:x y s k, 其中x y为整数,表示蚂蚁所在行号和列号(行号从上到下增长,列号从左到右增长,都是从0开始编号)。s 是一个大写字母,表示蚂蚁头的朝向,我们约定:上下左右分别用:UDLR表示。k 表示蚂蚁走的步数。
输出格式
  输出数据为两个空格分开的整数 p q, 分别表示蚂蚁在k步后,所处格子的行号和列号。
样例输入
5 6
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 3 L 5
样例输出
1 3
样例输入
3 3
0 0 0
1 1 1
1 1 1
1 1 U 6
样例输出
0 0


首先建立一个二维数组来使读者输入地图,用一个变量head来记录头的朝向

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#include<iostream>
#include<cstring>
using namespace std;
int n[4][2]={{-1,0},{0,-1},{1,0},{0,1}},a[5][201];
int k,p=0,nx,ny,head;
void dfs(int x,int y)
{
	if(p==k)
	{
		p++;
		nx=x;ny=y;
		return;
	}
	else if(p>k)
		return;
	//判断当前格子的颜色
	if(a[x][y]==0)
	{
		head=(head+1)%4;//因为在黑格中为右转,是++,所以不会小于零,只要用原数对4取余就可以
		a[x][y]=1;
		p++;
		if(a[x+n[head][0]][y+n[head][1]]!=-1)
			dfs(x+n[head][0],y+n[head][1]);
		else
			dfs(x,y);
	}
	else if(a[x][y]==1)
	{
		if((head-1)<0)     //在白格中可能会减得小于零,所以需要先判断一下
			head=3;
		else
			head--;
		a[x][y]=0;
		p++;
		if(a[x+n[head][0]][y+n[head][1]]!=-1)
			dfs(x+n[head][0],y+n[head][1]);
		else
			dfs(x,y);
	}
	else cout<<"error";
}
int main()
{
	int col,row;
	memset(a,-1,sizeof(a));
	cin>>col>>row;
	for(int i=1;i<=row;i++)
		for(int j=1;j<=col;j++)
			cin>>a[i][j];
	int x,y;
	char ch;
	cin>>x>>y>>ch>>k;
	switch(ch)
	{
	case'U':head=0;break;
	case'L':head=1;break;
	case'D':head=2;break;
	case'R':head=3;break;
	}
	dfs(x+1,y+1);
	cout<<nx-1<<' '<<ny-1;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值