卷积神经网络:保持图像的空间结构(spatial structure)
神经元,卷积核的区别
1.卷积层
参数共享的原理:
作一个合理的假设:如果一个特征在计算某个空间位置 的时候有用,那么它在计算另一个不同位置 的时候也有用。
补充解释:正是因为参数共享,卷积层的前向传播在每个深度切片中可以看做是在计算神经元权重和输入数据体的卷积(这就是「卷积层」名字由来)。这也是为什么总是将这些权重集合称为滤波器(filter) (或卷积核(kernel) ),因为它们和输入进行了卷积。
有时候参数共享假设可能没有意义,特别是当卷积神经网络的输入图像是一些明确的中心结构时候。这时候我们就应该期望在图片的不同位置学习到完全不同的特征。一个具体的例子就是输入图像是人脸,人脸一般都处于图片中心。你可能期望不同的特征,比如眼睛特征或者头发特征可能(也应该)会在图片的不同位置被学习。在这个例子中,通常就放松参数共享的限制,将层称为局部连接层(Locally-Connected Layer)。
2.池化层
作用是逐渐降低数据体的空间(宽、高)尺寸
3.全连接层
全连接层可以转化成卷积层
剩下一堆调参,先不看