给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:插入一个字符;删除一个字符;替换一个字符
(1)dp数组
dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。(最少编辑次数)
(2)递推公式
如果 (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];
如果两者不等,那么有三种情况:
增加一个字符,相当于word2删除一个字符,dp[i][j] = dp[i][j - 1] + 1;
删除一个字符,dp[i][j] = dp[i - 1][j] + 1;
替换一个字符,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。 dp[i][j] = dp[i - 1][j - 1] + 1;
(3)初始化
dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;同理dp[0][j] = j。
(4)遍历顺序
从上到下,从左到右
代码如下:
class Solution {
public:
int minDistance(string word1, string word2) {
vector<vector<int>> dp(word1.size() + 1, vector<int> (word2.size() + 1, 0));
for(int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for(int j = 0; j <= word2.size(); j++) dp[0][j] = j;
for(int i = 1; i <= word1.size(); i++) {
for(int j = 1; j <= word2.size(); j++) {
if(word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
}else{
dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1;
}
}
}
return dp[word1.size()][word2.size()];
}
};