EMR StarRocks实战——猿辅导的OLAP演进之路

目录

一、数据需求产生

二、OLAP选型

2.1 需求

2.2 调研

 2.3 对比

三、StarRocks的优势

四、业务场景和技术方案

4.1 整体的数据架构

4.2 BI自助/报表/多维分析

4.3 实时事件分析

4.5 直播教室引擎性能监控

4.4 B端业务后台—斑马

4.5 学校端数据产品—飞象星球

4.6 电商订单分析

五、基础建设

5.1 运维

5.2 EMR-Serverless- StarRocks

原文大佬写的这篇EMR StarRocks数仓建设案例有借鉴意义,这里摘抄下来用作学习和知识沉淀。如果侵权,请告知~

一、数据需求产生

    猿辅导成立多年,早期是基于关系型的MySQL数据库来做数据的需求。随着业务的发展,多个服务在一个 DB去做数据的汇总,以及一些微服务架构的产生,使得数据逐渐走向分裂,很难在 MySQL 里完成统一的数仓

  因此在2014年,公司开始了统一数仓的假设,采用的是比较成熟的Hadoop体系。虽然是用hive,mapreduce做离线的批量ETL,但是为了保证用户交互足够快,延迟足够短,还是会把最终的应用层的数据放在Mysql中来处理,包括现在很多离线需求也仍然是这样的一个链路。

   随着公司业

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值