浅谈动作识别TSN, TRN, ECO

其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。

什么是动作识别?给定一个视频,通过机器来识别出视频里的主要动作类型。

动作识别表面是简单的分类问题,但从本质上来说,是视频理解问题,很多因素都会影响其中,比如不同类型视频中空间时间信息权重不同?视频长短不一致?视频中动作持续的起始终止时间差异很大?视频对应的语义标签是否模糊?

本文主要对比video-level 动作识别的经典方法TSN,及其拓展变形版本的TRN和ECO。

 

Temporal Segment Network[1], ECCV2016

TSN提出的背景是当时业界做动作识别都是用Two-stream CNN 和C3D 比较多,它们都有个通病,就是需要密集采样视频帧,比如C3D 中使用的是连续采样间隔的16 frames,这样当输入是个Long视频,计算量很庞大~

故文中就提出了 稀疏时间采样策略 ,就是不管输入视频的长短,直接分成K个Segment,然后在每个Segment再随机找出一个时间小片,分别用shared CNN 来提取空间上的特征,再进行feature-level 的融合,最后再Softmax 分类:

公式中Tk表示第K个Segment;函数F表示CNN网络出来的特征;G表示特征融合函数;H表示分类层Softmax。

整个网络框架图如下,很简洁:

TSN[1]

由于其中没有使用3D conv,故为了更好进行temporal 特征提取,文中也使用了类似双流的多模态输入:即上图的Spatial ConvNet 的输入可以是RGB图 或者RGB差异图;Temporal ConvNet 的输入可以是 光流图 或者wrapped光流:

不同模态输入[1]

从实验结果来看,使用Average fusion去融合特征效果最好;而当使用三模态输入(Optical Flow + Warped Flow + RGB)时,在HMDB51和UCF101超state-of-the-art;不过若只是RGB作为输入的话,性能不如C3D~

总结:

Pros:通过Sparse temporal sampling 可以扔掉很多冗余帧,初步满足实际应用的real-time要求。

Cons: 对于Temporal特征欠考虑,更多地是focus 在apperance feature。文中亦无对比超参K值(Default K=3)的选取对结果的影响 及Segment内部采样小片策略。

 

Temporal Relation Network[2], ECCV2018

TRN致力于探索时间维度上的关系推理,那问题来了,怎么样才能找到特征间在时间上的传播关系呢?其实像传统的3D conv架构(C3D,P3D,R(2+1)D, I3D),也是有Temporal conv 在里头,也能从不同感受野即multi-temporal-scale来得到联系。本文是在TSN框架上,提出用于video-level的实时时间关系推理框架。

 

TRN的main contribution 有两个:

  1. 设计了新型的fusion函数来表征不同temporal segment 的relation,文中是通过MLP( concat feature -- ReLU -- FC -- ReLU -- FC)的结构来实现,而TSN中的fusion函数只是通过简单的average pooling
  2. 通过时间维度上Multi-scale 特征融合,来提高video-level鲁棒性,起码能抗快速动作和慢速动作干扰。

下图的框架图一目了然,算法实现流程就是先均匀地采样出不同scale的Segment 来对应2-frame, 3-frame, ..., N-frame relation;然后对每个Segment里小片提取Spatial feature,进行MLP 的temporal fusion,送进分类器;最后将不同scale的分类score叠加来作最后预测值。

TRN[2]

两个实现的细节点需要注意

1.  对采样下来的N-frame,必须保持时序性,即从先到后;这样后面的temporal fusion环节MLP才能学会推理动作的时间关系。

2. 不同scale的采样帧对应的MLP 都是独立的,不share参数,因为含的帧数信息量也不同,输入给MLP的大小自然也不同。

文中给出了几个非常有趣的实验结果

1.如下图所示,在不同的数据集, TRN和TSN的性能差异很大。这说明什么问题呢?在UCF, Kinectics, Moments里两者的性能相近,说明这三个数据集的动作与空间上下文具有强相关性,而对于时间上下文相关性较弱;而Something-something, Jester, Charades 里动作较为复杂,时间上下文联系较强,TRN的性能明显高于TSN

不同的fusion方式在6个数据集上的性能[2]

2. 保持帧间时序对于TRN的重要性,如下图所示,可见乱序输入的TRN在动作复杂的something-something数据集下性能严重下降;而在UCF101里并不严重,因为该数据集需要更多的是空间上下文信息。

正序和乱序的性能[2]

 

总结

Pros: 

更鲁棒的action/activity 时空特征表达方式,即MLP fusion + Multi-scale。

Cons: 

Spatial 和temporal 的联系还是太少,只在最后embedding feature时用MLP融合了一下~~另应对比不同的fusion方式,如LSTM/GRU与MLP的性能差异~

 

ECO[3], ECCV2018

本文通过trade-off TSN系列 和3Dconv系列,来实现实时的online video understanding(文中夸张地描述到ECO runs at 675 fps (at 970 fps with ECOLite) on a Tesla P100 GPU)。

ECO的主要贡献

  1. 使用TSN 稀疏采样来减少不必要的冗余帧的前提下,对采样帧的mid/high-level 进行spatio-temporal 特征fusion,故比TRN 只在最后特征层来做temporal fusion的时空表达能力更强~ 

2. 提出了一整套工程化的Online video understanding 框架。

来看看轻量级的ECO-Lite的网络框架图,对N个中的每个Segment中的帧来提取特征到某一层K*28*28,然后通过3D-ResNet(当然拉,这里你也可以使用convLSTM + SPP 等方式来对比下效果) 提取N个Segment的时空特征,最后再分类。

  • 8
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值