CentOS下的CUDA安装和使用指南

本文详细介绍在Linux环境下,如何通过Anaconda安装CUDA并配置NVIDIA驱动,实现GPU加速的深度学习模型训练。从Anaconda的安装、NVIDIA驱动的配置,到CUDAToolkit的安装,最后通过Pytorch验证GPU加速效果。

引言:本文安装CUDA主要用于在GPU上训练深度学习模型,编程语言为Python,与C/C++不同,使用Anaconda安装很方便,没有包管理的冲突。

安装步骤

  • 安装 Anaconda如果有则跳过此步骤
  • 安装 NVIDIA Driver,即显卡驱动
  • 使用 conda 安装 CUDA Toolkit
  • 使用 Python 扩展库进行 GPU 加速的 CUDA 编程

一、安装Anaconda(若已安装请忽略)

Linux的版本在官网上找合适版本的软件包,然后右键复制链接地址,通过wget命令下载。
官网:https://repo.anaconda.com/archive/
在这里插入图片描述
这里我以2019年版本为例,我下载的是shell脚本(对应.sh文件)

wget https://repo.continuum.io/archive/Anaconda3-2019.07-Linux-x86_64.sh

执行该shell脚本,进行Anaconda的安装

sudo sh Anaconda3-2019.07-Linux-x86_64.sh

安装完毕后,查看镜像源

conda config --show channels

如果只有default,则需要修改channels添加国内清华镜像源以加速下载要安装的包

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes

之后再show一下就能看到
在这里插入图片描述

二、下载安装 NVIDIA Driver

首先检查系统是否有支持 CUDA 编程的 GPU,使用如下命令查看当前GPU的型号。系统版本为 CentOS 7.8,GPU 为 NVIDIA Tesla K80 (2个)

lspci | grep -i nvidia

在这里插入图片描述

2.1 安装基础依赖环境

yum install kernel-devel

注意需要保证内核版本和源码版本一致,否则会报错。

# 查看内核版本
ls /boot | grep vmlinu
# 查看源码版本
rpm -aq | grep kernel-devel

如下两者版本一致
在这里插入图片描述

2.2 下载 NVIDIA Driver

在官网中输入自己GPU相关信息和OS类型(比如我的设置如下),即可搜索出相应的NVIDIA Driver下载链接
官网:https://www.nvidia.cn/Download/index.aspx?lang=cn
在这里插入图片描述
然后在下载处,右键复制链接地址即可
在这里插入图片描述

  • 拼装好链接后就可以直接下载了
wget http://cn.download.nvidia.com/tesla/450.51.06/NVIDIA-Linux-x86_64-450.51.06.run
  • 屏蔽默认带有的nouveau,修改dist-blacklist.conf配置文件
su root  # 切换到root用户
vim /lib/modprobe.d/dist-blacklist.conf 
  • nvidiafb注释掉
# blacklist nvidiafb 

然后添加以下语句:

blacklist nouveau
options nouveau modeset=0
  • 重建initramfs image步骤
mv /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.bak
dracut /boot/initramfs-$(uname -r).img $(uname -r) 
  • 修改运行级别为文本模式,并重启
systemctl set-default multi-user.target
reboot

查看nouveau是否已经禁用,若没显示相关内容则已禁用

ls mod | grep nouveau
  • 进入下载的驱动所在目录
chmod +x NVIDIA-Linux-x86_64-450.51.06.run 
  • 安装驱动(注:①kernel-source-path地址需改为自己的地址;②一路ok+accpet即可)
./NVIDIA-Linux-x86_64-450.51.06.run --kernel-source-path=/usr/src/kernels/3.10.0-1127.19.1.el7.x86_64/

安装成功后,使用如下命令可以看到安装好的驱动版本号(Driver Version)

nvidia-smi

在这里插入图片描述

三、使用conda安装CUDA Toolkit

这里只需要一路accept即可,很简单,需要花点时间

conda install -c anaconda cudatoolkit

Numba 是 Anaconda 自带的扩展库之一。在输入如下命令可查看硬件信息、操作系统信息、Python 版本、CUDA 版本信息。

numba -s

【本机硬件信息】:
在这里插入图片描述
【本机操作系统信息】:

> 这里是引用
【本机CUDA信息】:
在这里插入图片描述

四、使用Pytorch+CUDA进行GPU加速的Python 编程

先查看conda list中是否有已安装的torch

 conda list | grep torch

若没有,则进行一步安装

conda install pytorch torchvision -c pytorch

在IPython中输入如下测试代码

import torch  
torch.cuda.is_available() 

返回True则说明torch可用GPU
在这里插入图片描述

【参考文献】:
[1] Centos7安装独立显卡驱动.
[2] 知乎.Linux 下的CUDA安装和使用指南.
[3] linux命令行下适配NVIDIA驱动.

资源下载链接为: https://pan.quark.cn/s/9648a1f24758 在IT领域,CentOS 7是一种广泛使用的开源操作系统,而CUDANVIDIA推出的用于GPU加速计算的平台编程模型。CUDA 7.5作为其一个版本,为开发者提供了诸多改进新特性。本指南将介绍如何在CentOS 7上安装CUDA 7.5。 安装前,需准备好CentOS 7系统,确保已安装Python 2.7.*,并连接网络以便下载所需文件。首先安装NVIDIA图形驱动,因为CUDA依赖该驱动运行。根据硬件选择合适的驱动版本,例如GT640显卡可下载NVIDIA-Linux-x86_64-361.42.run。使用root权限打开终端,通过uname -r查看内核版本,然后安装gcc、kernel-develkernel-headers。为避免与Nouveau驱动冲突,需在/etc/modprobe.d目录下的blacklist.confdist-blacklist.conf文件中添加blacklist nouveauoptions nouveau modeset=0,并用dracut命令更新initramfs镜像。将系统切换到文本模式(runlevel 3),运行驱动安装文件,按提示完成安装,重启系统后返回图形模式。 安装NVIDIA驱动后,下载CUDA 7.5 Toolkit的.run安装文件并执行安装安装时需接受许可协议,选择组件配置路径等。CUDA安装通常会更新环境变量,方便调用相关命令。安装完成后,可通过lspci命令检查NVIDIA驱动是否安装成功。还需设置环境变量,如CUDA_HOME指向安装目录,将CUDA的binlib64目录添加到PATHLD_LIBRARY_PATH中。若系统有其他显卡,可能需禁用其默认驱动,以确保NVIDIA驱动正常工作,有
<think>好的,我需要帮助用户在CentOS 7上安装CUDAPyTorch的最新版本。首先,我应该回顾用户提供的引用内容,看看是否有相关的步骤可以参考。引用1提到了在远程服务器配置Anaconda并安装PyTorch的教程,引用23则详细说明了在CentOS 7下安装PyTorch的步骤,包括使用pip3安装torch、torchvisiontorchaudio。不过用户还需要安装CUDA,所以可能需要补充这方面的内容。 首先,安装CUDA的前提是检查系统是否满足要求。CentOS 7的版本内核需要支持CUDA,用户需要确认自己的系统版本。然后,安装NVIDIA驱动程序,因为CUDA依赖于此。用户可能需要通过添加ELRepo仓库来安装最新的驱动程序,或者使用NVIDIA官方.run文件。接下来,下载CUDA Toolkit,根据PyTorch的要求选择版本。安装完成后,需要设置环境变量,更新.bashrc文件,并验证CUDA是否安装成功。 接下来是安装PyTorch。根据引用3,用户可以使用pip3安装,但需要指定CUDA版本。PyTorch官网提供了不同配置的命令,用户应选择与CUDA版本对应的命令。例如,使用conda或pip安装,并确保安装的PyTorch支持CUDA安装后需要验证PyTorch是否能检测到CUDA,以及GPU是否可用。 可能遇到的问题包括驱动兼容性、CUDA版本与PyTorch版本不匹配、环境变量未正确设置等。需要提醒用户注意这些点,并参考提供的引用链接获取详细步骤。另外,用户可能需要安装cuDNN,但PyTorch通常会自动处理这部分依赖,不过最好还是确认一下。 现在需要将步骤整理成清晰的结构,分点说明,并确保使用正确的格式,如代码块用反引号包裹,独立公式用$$...$$。同时,生成相关问题,可能涉及CUDA版本选择、验证安装、常见错误解决等。</think>### 在 CentOS 7 上安装 CUDA PyTorch 最新版本的分步指南 #### 一、安装前准备 1. **确认系统要求** - CentOS 7 需要为 64 位系统,内核版本建议 ≥ 3.10。 - 确保服务器有支持 CUDANVIDIA GPU(通过 `lspci | grep -i nvidia` 检查)。 - 安装依赖包: ```bash sudo yum install -y epel-release kernel-devel kernel-headers gcc make ``` 2. **禁用 Nouveau 驱动** - 创建文件 `/etc/modprobe.d/blacklist-nouveau.conf`,添加: ``` blacklist nouveau options nouveau modeset=0 ``` - 更新 initramfs 并重启: ```bash sudo dracut --force sudo reboot ``` #### 二、安装 NVIDIA 驱动 1. **通过 ELRepo 仓库安装(推荐)** - 添加仓库: ```bash sudo rpm --import https://www.elrepo.org/RPM-GPG-KEY-elrepo.org sudo yum install -y https://www.elrepo.org/elrepo-release-7.el7.elrepo.noarch.rpm ``` - 安装驱动: ```bash sudo yum install -y nvidia-detect nvidia-detect # 查看推荐驱动版本 sudo yum install -y kmod-nvidia ``` - 重启后验证:`nvidia-smi` [^2]。 2. **或手动安装官方驱动** - 从 [NVIDIA 官网](https://www.nvidia.com/Download/index.aspx) 下载 `.run` 文件,执行: ```bash sudo sh NVIDIA-Linux-x86_64-*.run ``` #### 三、安装 CUDA Toolkit 1. **下载 CUDA 安装包** - 访问 [CUDA Toolkit 官网](https://developer.nvidia.com/cuda-toolkit-archive),选择与 PyTorch 兼容的最新版本(如 12.x)。 - 使用 wget 下载并安装: ```bash wget https://developer.download.nvidia.com/compute/cuda/12.x.x/local_installers/cuda_12.x.x_535.86.10_linux.run sudo sh cuda_12.x.x_*.run ``` - **安装选项**:取消勾选驱动(若已安装),其他保持默认。 2. **配置环境变量** - 编辑 `~/.bashrc`,添加: ```bash export PATH=/usr/local/cuda-12.x/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-12.x/lib64:$LD_LIBRARY_PATH ``` - 生效配置:`source ~/.bashrc`。 3. **验证 CUDA 安装** ```bash nvcc -V # 应显示 CUDA 版本 ``` #### 四、安装 PyTorch 1. **通过 Conda 或 Pip 安装** - 若使用 Anaconda(参考[^1]): ```bash conda install pytorch torchvision torchaudio pytorch-cuda=12.x -c pytorch -c nvidia ``` - 若使用 Pip(参考[^3]): ```bash pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 ``` 2. **验证 PyTorch 与 CUDA** ```python import torch print(torch.__version__) # 输出版本号 print(torch.cuda.is_available()) # 应返回 True ``` #### 五、常见问题 - **CUDA 版本不匹配**:PyTorch 官网提供历史版本安装命令,需与 CUDA 版本对齐。 - **权限问题**:使用 `sudo` 或切换为 root 用户执行安装。 - **驱动冲突**:彻底卸载旧驱动后再安装新版本。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SL_World

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值