Leetcode|二叉树的属性|110. 平衡二叉树

在这里插入图片描述
在这里插入图片描述

1 自底向上的递归(推荐)

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int recursive(TreeNode* root) {
        if (!root) return 0;
        int left = recursive(root->left);
        if (left == -1) return -1;
        int right = recursive(root->right);
        if (right == -1) return -1;
        if (abs(left - right) > 1) 
            return -1;
        return max(left, right) + 1;
    }
    bool isBalanced(TreeNode* root) {
        return recursive(root) != -1;
    }
};

在这里插入图片描述

2 自顶向下的递归(不推荐)

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n ) O(n) O(n)

class Solution {
public:
    int height(TreeNode* root) {
        if (!root) return 0;
        int left = height(root->left);
        int right = height(root->right);
        return max(left, right) + 1;
    }
    bool isBalanced(TreeNode* root) {
        if (!root) return true;
        return (abs( height(root->left) - height(root->right) ) < 2) && isBalanced(root->left) && isBalanced(root->right);
    }
};

注意最后的条件是

abs( height(root->left) - height(root->right) ) < 2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SL_World

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值