摘要
本节围绕“千奇百怪的乘法算法”展开,介绍了几种特殊的乘法计算方法,包括转化成加法、乘法分配律、乘法竖式、表格法和图形法等。通过这些方法计算23×12等乘法问题,展示了乘法计算的多样性和灵活性。视频旨在展示乘法计算的多种途径,帮助理解乘法的本质和原理,拓宽解题思路,提升数学扩展问题的解决能力。同时强调了理解这些算法对于解决复杂数学问题的价值。
课程介绍与目标
1.介绍课程内容:千奇百怪的乘法算法。
2.课程目标:介绍几种不常见的乘法算法,帮助学生理解数学原理,拓宽解题思路。
乘法算法概述
1.乘法算法种类:转化成加法、化简方法、乘法分配律、乘法交换律、乘法竖式、表格法、图形法。
2.算法示例:以两位数乘以两位数为例,展示不同算法的计算过程。
转化成加法
1.方法原理:将乘法转化为加法,通过多次加法运算得到结果。
2.示例计算:23×12可以转化为23+23+23+23+23+23+23+23+23+23+23+23,或者12+12+12+12+12+12+12+12+12+12+12+12。
化简方法
1.方法原理:通过乘法分配律将乘法拆分成更容易计算的形式。
2.示例计算:23×12可以拆分为23×(10+2)或者(20+3)×12。
乘法竖式
1.方法原理:通过竖式计算乘法,类似于乘法分配律的实现。
2.示例计算:23×12的竖式计算过程,包括步骤和结果。
表格法
1.方法原理:通过表格填写数字,斜线分组,计算交叉点数量得到结果。
2.示例计算:23×12的表格法计算过程,包括步骤和结果。
图形法
1.方法原理:通过画线图形表示乘法,数点计算结果。
2.示例计算:23×12的图形法计算过程,包括步骤和结果。
算法比较与总结
1.算法相似性:表格法和图形法都通过画线表示乘法,数点计算结果。
2.算法本质:所有算法都基于乘法分配律和拆分思想。
今天呢,继续给大家来一节加星号的拓展课程啊,千奇百怪的乘法算法,今天这节课里会给大家介绍几种。平时在正规的计算里不会遇到的乘法算法,那为什么要讲这些呢?其实不是为了给大家介绍什么知识点,而是为了解决一个问题。就是我知道有些同学可能听了这节的课啊,会觉得哎呀,我我不用搞那么多原理啊,什么什么思想之类的东西,我只要会算不就可以了吗?
那事实上呢,如果你只是做计算,它确实是可以的,但是如果你懂得这些数学原理之类的东西,你会发现。你在做一些数学扩展问题,他做一些之前没有见过的问题的时候,思路会相当的开阔,你可以迅速的理解一些。其他看似完全没有关系的呃,数学问题,今天这节课就是给大家做一个小小的示例啊,看看你能不能理解?啊,后面那两种比较奇怪的乘法算法究竟是什么原因?
好,我们来看一下啊,乘法有多少种算法,我这边以两个啊,一个两位数乘以两位数的案例给大家做一个示例。我们今天呢,会花好多种方法来算23×12这种东西,顺便也给大家复习一下我们之前所讲的所有的计算乘法的一些方法。首先是转化成加法23×12,如果一个完全没有学过乘法的小朋友,能不能算呢?只要他学过加法也是可以算的啊。可以拆不是不是拆分,可以把它转化为加法,因为乘法毕竟就是加法的简便运算嘛,那这个时候就可以把它写成什么呢?23+23,这是23×2对吧?乘以三就是再加一个23×4,再加一个23。一直加多少次呢?一直加。12次。那这个转换成加法之后,我们就可以用加法把这个乘法算出来了,当然了,乘法你还可以用另外一种。就是呃,化简方法就是说这边是23×12对吧?你还可以交换一下。
交换成12。加12+12+12,一直加加加多少次呢?加23次。所以从乘法的意义上来讲,这个式子是可以理解成两个两个含义的,第一个是23+12次,也就是12个23相加。第二种呢,是23个12相加,那不管怎么加啊,最终你把它