小学计算原理:2运算的起源

摘要

本节主要讲述了运算的起源和加法的出现,以及学习过程中容易出现的疑惑。首先,视频通过简单的小球和刻痕技术,引出数学从图形形式到阿拉伯数字的演化过程。接着,通过具体的例子,解释了加法的出现是为了解决实际问题,如统计摘取的果子数量,简化数数过程。视频还强调了学习过程中理解原理和积累操作经验的重要性,避免单纯记忆和抽象计算,以提高学习效果。

运算的起源与演化

1.运算的起源可以追溯到古代人们的计数和刻痕技术,逐渐简化成图形形式,最终转换为阿拉伯数字。
2.数学的发展是一个不断演化的过程,新的问题的出现推动了运算的进一步发展。
3.阿拉伯数字的出现简化了计数和比较大小,但处理新问题时仍需新的运算方法。

加法的起源与意义

1.加法的出现是为了简化繁复的计数过程,特别是当新的数量加入时,无需重新数一遍。
2.加法的出现是为了简化问题,而非增加难度,其目的是提高数学处理的效率。
3.学习加法时应理解其原理过程,通过实际操作和逐步积累经验来培养数感。

加法的学习方法

1.学习加法时应从实际问题出发,理解加法的意义和应用场景。
2.通过实际操作和具体案例来讲解加法的原理和计算方法。
3.强调数感和操作经验的重要性,建议从生活中寻找机会进行数学练习。

加法的基本定律

1.加法交换律:a+b=b+a,表示加法的顺序不影响结果。
2.加法结合律:a+b+c=a+(b+c),表示加法的结合方式不影响结果。
3.这些定律可以通过操作经验来理解,而非仅靠背诵。

乘法的起源与意义

1.乘法的出现是为了简化连加法的书写和计算过程,特别是当相同的数连加时。
2.乘法是加法的简便运算,用于提高计算效率。
3.乘法的出现大大简化了问题的复杂性,使得书写和计算更加便捷。

乘法的基本定律

1.乘法交换律:a×b=b×a,表示乘法顺序不影响结果。
2.乘法结合律:a×b×c=a×(b×c),表示乘法的结合方式不影响结果。
3.乘法分配律:a×(b+c)=a×b+a×c,表示乘法对加法的分配性质。
4.这些定律可以通过操作经验来理解,而非仅靠背诵。

除法的起源与意义

1.除法是乘法的逆运算,用于将一个总量平均分成若干份。
2.除法的基本含义是:将一定数量的物品平均分给若干人或群体。
3.除法的学习应注重实际操作和经验积累,通过分东西来理解除法的意义。

除法的基本性质

1.余数必须小于除数:余数是分不完的剩余部分,不能超过除数。
2.这个性质可以通过实际操作来理解,确保分东西时的公平性。

运算的底层铺垫与学习流程

1.学习运算应注重底层铺垫,包括理解运算的原理、动机和算理。
2.强调操作经验的重要性,建议通过生活中的实际操作来积累数感。
3.学习流程应先从实际问题出发,理解运算的意义,再逐步过渡到书面计算。

那第二课有关于运算的起源呃,上节课我们已经讲过了啊,经过我们种种的啊,老祖先的聪明才智。这个简单的一个一个的小球啊,或者说那种刻痕技术对吧?慢慢的呢,被我们简化成了这种。图形形式同时呢,最终转换成了我们的阿拉伯数字啊,当然了,数学到此为止显然没有完啊,还会有一些继续的演化。而这个演化的动机呢,就是我们上节课一直在说的啊,我们会遇到一些新的问题。
阿拉伯数字出来之后啊,虽然能够帮助我们比较巧妙的进行一些计数。对吧,计数是变得非常简单了啊,同时呢,简单的比大小也会变得比较直观,但是啊,一旦你遇到一些新的问题,比如说这个问题啊。
在这里插入图片描述
我昨天哦,我今天摘了几个果子,对吧?这边你是容易直接用那个阿拉伯数字给它记下来的。我明天呢,又摘了一些果子,那这个呢,你也不难把它直接用阿拉伯数字数完记出来,那关键是啊,因为人们。呃,比如说我们远古人啊,他采的果子越来越多,他要做一些统计对吧?比如说我今天摘的,加上明天摘的,那我一共摘了多少呢?一旦把一部分新的东西加到我原本的这个里面去,之后这个东西呢,本身数量就变多了。在没有发明具体的运算之前,大家是要重新数一遍,我不知道大家还在座的,可能都是家长啊,家长可能离这个阶段已经非常远了。可能不太能够回想起我们一开始学习数学之前的那个经验啊,但是我家的小宝贝今年就是幼儿园大班。它在进行计数的时候,就会遇到这个问题非常明显,比如说我给它一把棋子儿啊,它数出来了,比如12个13个啊,没问题,能数出来。但是呢,我往零里面加两个或者加三个,
它就全部需要重新数一遍,那这个啊,如果数量少还比较。嗯,没么,没什么大问题,但是如果数量一多之后,你这每一遍都要全部重新去数,那这个工作量是非常大的。所以呢,后来啊,很多有聪明才智的祖先们就发现啊,既然我每一次都要加很多很多新的东西进来。我有没有什么方便的方法能够帮助我们一下得出最终的结果,而跳过这个从一开始数的过程呢?
在这里插入图片描述
那一旦你有了这种想法之后,加法就自然而然会出现了,比如说我们看这个案例,我前天摘了四个果子。我昨天摘了三果子,我今天呢又摘了五个果子,如果从零开始一起从一开始去数啊,那你就要重新数一遍,对吧?但是呢,如果你学会一种加法,比如说这边啊。四+3,再加上五,能够直接得出它的答案的话,那我以后每再增加一些的话,就不需要重新再数了。在今天这个基础之上,只要增加一小部分加进来,直接算出结果就OK了啊,所以呢?加法的出现,大家注意一下啊,其实是什么呢?是为了简化我们繁荣的这么一个数数过程才出现的。它是为了简化问题而出现,而不是像现在的很多同学理解的啊啊,这个东西好复杂呀,我为什么要发明它呢?是不是就是为了难为我们进行考试啊?当然不是了,因为如果你没有这种东西的话,没有这种方法的话,你在真正处理一些实际问题的时候是特别的麻烦的。
在这里插入图片描述

所以这个地方啊,就需要简单给大家来说明一件事情,这是有关于我们学习的一个基本流程。大多数同学啊,他因为缺乏一些基本的底层铺垫,什么叫底层铺垫啊,你看我们很多同学。是不是在一开始学数学的时候就从这个时候开始学了?就是我们一开始就教他怎么样进行书面的计算,一+2等于几,三+5等于几对吧,然后背一些什么什么加法口诀。但是呢,它就会有疑惑,我为什么要学中这个东西呢?就是它的原理是什么?以及这个东西为什么等于比如说三+5为什么等于八呢?四和六为什么是好朋友数呢?这个算理不是很明白。那同时呢,因为他的动机也不明白他的算理呢,也不明白同时呢,也缺少一些操作经验,对吧?直接学的是非常抽象的那个。书面计算啊,所以说它的树感就非常差,成年人呢,一眼就能看出来一些错误,他们就是看不出来,因为他们缺乏这些东西。这个计算啊,书面计算底层的那些经验,包括这个对原理的理解啊,这些东西都没有,因此他在学的时候就会感觉到。呃,非常的,就是感觉到很麻烦,或者不知道为什么要学,总之啊,学起来就非常的费劲。
真正的学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值