数论--线性求逆元&线性求阶乘逆元

线性求逆元

https://blog.csdn.net/qq_34564984/article/details/52292502

线性求阶乘逆元

const int mod = 1e9 + 7;
ll fac[maxn];//fac[i]表示i!
ll inv[maxn];//inv[i]表示i!的逆元

ll qk_mod(ll a,ll b,ll mod)
{
    ll ans = 1;
    while(b){
        if(b & 1) ans = ans * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return ans;
}

void init()
{
    fac[0] = 1;
    for(int i = 1;i < maxn;i ++) fac[i] = fac[i - 1] * i % mod;
    inv[maxn - 1] = qk_mod(fac[maxn - 1],mod - 2,mod);
    for(int i = maxn - 2;i >= 1;i --) inv[i] = inv[i + 1] * (i + 1) % mod;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值