数论--因子&容斥&bitmask--codeforces1007b Pave the Parallelepiped

给A,B,C,求他们的因子(a,b,c)的三元组的个数(a|A ,b|B,c|C,不考虑顺序)

A,B,C有重复因子很麻烦,所以考虑容斥

//1.因子总是和bitmask在一起
//要么是对因子用位压缩
//要么用二进制表示是a,b,c谁的因子,并且容斥
//2.m个不同的球有放回的取n个 = C(m + n - 1,n)
//3.__builtin_popcount(i) 返回i二进制中1的个数

题解:

http://codeforces.com/blog/entry/60642

 



#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 5;

int cnt[8];
int use[8];
int f[maxn];//f[i]表示i的因子个数

ll C(int n,int k)
{
    if(k == 1) return n;
    else if(k == 2) return 1ll * n * (n - 1) / 2;
    else if(k == 3) return 1ll * n * (n - 1) * (n - 2) / 6;
    return -1;//
}
bool check(int i,int j,int k)
{
    if(use[i] > __builtin_popcount(i)) return false;
    if(use[j] > __builtin_popcount(j)) return false;
    if(use[k] > __builtin_popcount(k)) return false;
    return true;
}
int gcd(int a,int b){
    return b == 0 ? a : gcd(b, a % b);
}
void init()
{
    for (int i = 1; i < maxn; i ++) {
        for (int j = i ; j < maxn; j += i) {
            f[j] ++;
        }
    }
}
int main()
{
    init();
   int T;scanf("%d",&T);
    while(T --){
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        int xy = gcd(x,y),xz = gcd(x,z),yz = gcd(y,z);
        int xyz = gcd(xy,z);
        cnt[1] = f[x] - f[xy] - f[xz] + f[xyz];//仅仅是x的因子,的个数
        cnt[2] = f[y] - f[xy] - f[yz] + f[xyz];
        cnt[4] = f[z] - f[xz] - f[yz] + f[xyz];//z
        cnt[3] = f[xy] - f[xyz];//xy
        cnt[5] = f[xz] - f[xyz];
        cnt[6] = f[yz] - f[xyz];
        cnt[7] = f[xyz];
        ll ans = 0;
        for(int i = 1;i < 8;i ++){
            for(int j = i;j < 8;j ++){
                for(int k = j;k < 8;k ++){
                    if((i | j | k) == 7){
                        ll tmp = 1;
                        memset(use,0,sizeof(use));
                        use[i] ++;use[j] ++;use[k] ++;
                        if(!check(i,j,k)) continue;
                        for(int a = 1;a < 8;a ++){
                            if(use[a]){
                                tmp *= C(cnt[a] + use[a] - 1,use[a]);
                            }
                        }
                       // printf("we choose %d %d %d %lld\n",i,j,k,tmp);
                        ans += tmp;
                    }
                }
            }
        }
        printf("%lld\n",ans);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值