因子容斥

针对某些题目莫比乌斯反演公式法不太好用的情况

hdu5212:

\sum_{i=1}^{n}\sum_{j=1}^{n}(ai,aj)^2-(ai,aj),ai,n<=1e4

第一步化简柿子:ans=\sum_{d=1}^{mx}(d^2-d)*\sum_{i=1}^{n}\sum_{j=1}^{n}[(ai,aj)==d]

第二步看注释:

注意:倒着维护dp就是因子容斥

正着维护dp容斥系数是莫比乌斯函数

维护dp本质上是至少变恰好的容斥过程

//求hdu5212sum{i=1~n}{j=1~n}(ai,aj)^2-(ai,aj) n,ai<=1e4;带T 
//化简一下柿子:ans=sum{i=1~1e4}(d^2-d)*dp[d]
//dp[d]: 有多少对(ai,aj)==d
//维护cnt[i],有多少个aj是i的倍数
//那么dp[i]的初始值为cnt[i]*cnt[i] (乘法定理)
//辅助理解:初始值dp[i]=cnt[i]*cnt[i]表示有dp[i]对(at,aj)是i的倍数 
//然后因子容斥即可 
#include<bits/stdc++.h> 
#define ll long long
using namespace std;
const int mod=1e4+7;
int dp[10005];int cnt[10005];
int a[10005];
int main()
{
	int n;
	while(~scanf("%d",&n))
	{
		ll ans=0;
		for(int i=1;i<=10000;i++)cnt[i]=0,dp[i]=0;
		for(int i=1;i<=n;i++)scanf("%d",&a[i]),cnt[a[i]]++;
		
		for(int i=1;i<=10000;i++)
		{
			for(int j=2*i;j<=10000;j+=i)
				(cnt[i]+=cnt[j])%=mod;
		}
		for(int i=10000;i>=2;i--)
		{
			dp[i]=1ll*cnt[i]*cnt[i]%mod;
			for(int j=2*i;j<=10000;j+=i)
				(dp[i]-=1ll*dp[j]+mod)%=mod;
			ans=ans+(1ll*(1ll*i*i-i+mod)%mod)*dp[i]%mod;
			ans%=mod;
		}
		printf("%I64d\n",(ans+mod)%mod);
	}
}

CodeForce839D:

子集gcd,嘛,第一步也是先化简柿子

ans=\sum_{d>1 }d* \sum_{S\subset A}[gcd(S)==d]*|S|

这种柿子也不好用公式法

后面那戳设为dp[d],然后看注释

//CF839D题意:给一个集合A,若子集S的gcd不为1,则做贡献gcd(S)*|S|
//问总贡献是多少  ai<=1e6,n<=2e5 
//思路:枚举gcd(1e6=>i>=2),答案就是sum{i=2~1e6}i*dp(i)
//dp(i):gcd为i的子集S出现次数*|S|,考虑dp[i]的初值,后面因子容斥 
//维护cnt[i]:有cnt[i]个aj满足aj是i的倍数
//我们的子集大小|S|可以是1~cnt[i] ,枚举子集大小j: 
//dp[i]=sum{j=1~cnt[i]}j*C(cnt[i],j)=cnt[i]*2^(cnt[i]-1); 

#include<bits/stdc++.h>
#define ll long long 
using namespace std;
const int mod=1e9+7;
int cnt[1000005];
int a[1000005];
ll dp[1000005];
ll ans=0;
ll f[1000005];
int main()
{
	
	int n;scanf("%d",&n);
	for(int i=1;i<=n;i++)scanf("%d",&a[i]),cnt[a[i]]++;
	f[0]=1;
	for(int i=1;i<=1000000;i++)
	{
		f[i]=1ll*2*f[i-1]%mod;
		for(int j=2*i;j<=1000000;j+=i)
			cnt[i]+=cnt[j];
	}
	for(int i=1000000;i>=2;i--)
	{
		if(cnt[i])
		dp[i]=1ll*cnt[i]*f[cnt[i]-1]%mod;
		for(int j=2*i;j<=1000000;j+=i)
			dp[i]-=dp[j],dp[i]=(dp[i]+mod)%mod;
		ans+=1ll*i*dp[i]%mod;	
	}
	printf("%I64d\n",ans%mod);
		
} 

 

 

 

 

 

 

CodeForce1043F

隐晦的因子容斥,需要注意到答案t在1~8之间

维护dp[j]:n个数取t个数gcd为j的方案数

//CF1043F题意:n个数选尽量少的数使得gcd为1  n,ai<=3e5  如果没有输出-1 
//思路:
//首先,如果答案存在,那么最多为7(因为前7个质数乘起来>=3e5)
//问题转化成n个数取i个数gcd为1的方案数不为0 的最小的i 
//考虑DP[i][j] n个数选i个数gcd为j的方案数 
//子集选取gcd为j,考虑因子容斥 
//dp[i][j]-=dp[i][j*k] ,k>=2 初始dp[i][j]=C(cnt[j],i);
//问题变成找到最小的i使得dp[i][1]>0
//i从小到大枚举检测即可   
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int mod=1e9+7; 
int a[300005];
ll dp[10][300005];
int cnt[300005];
int jc[300005];
int jv[300005];
ll qmod(ll a,ll b)
{
	ll res=1;while(b)
	{
		if(b&1)res=res*a%mod;
		a=a*a%mod;b=b>>1;
	}return res;
} 
ll getC(ll a,ll b)
{
	if(a<b)return 0;
	return 1ll*jc[a]*jv[b]%mod*jv[a-b]%mod;
}
int main()
{
	jc[0]=jv[0]=1;
	for(int i=1;i<=300000;i++)jc[i]=1ll*jc[i-1]*i%mod,cnt[i]=0;
	jv[300000]=qmod(jc[300000],mod-2);
	for(int i=299999;i>=1;i--)jv[i]=1ll*jv[i+1]*(i+1)%mod;
	int n;scanf("%d",&n);
	for(int i=1;i<=n;i++)scanf("%d",&a[i]),cnt[a[i]]++;
	
	for(int i=1;i<=300000;i++)
	{
		for(int j=2*i;j<=300000;j+=i)
			cnt[i]+=cnt[j];
	}	
	
	for(int i=1;i<=8;i++)
	{
		for(int j=300000;j>=1;j--)
		{
			dp[i][j]=getC(cnt[j],i);
			for(int k=2*j;k<=300000;k+=j)
				dp[i][j]=(dp[i][j]-dp[i][k]+mod)%mod;
		}
		if(dp[i][1]>0)
		{
			printf("%d\n",i);
			return 0;
		}
	}
	//5   7 2 4 4 4
	//printf("test:%d %d %d %d\n",dp[2][1],dp[2][2],dp[2][4],dp[2][8]); 
	
	puts("-1");
} 

 

CodeForce803F

经典的因子容斥

//CF803F  因子容斥 n<=1e5,ai<=1e5 
//题意:问有多少个子集S满足gcd(S)==1 
//思路:设dp[j]为 子集的gcd恰好是j的个数
//现在求 dp[1]  

//cnt[j]表示有多少个ak满足ak是j的倍数
//在cnt[j]里取任意个都是满足要求的子集 
//C(cnt[j],1)+C(cnt[j],2)+... C(cnt[j],cnt[j]) =2^cnt[j]-1
//初始化dp[j]=2^cnt[j]-1,此时dp[j]表示子集的gcd是j的倍数的个数
//我们要求恰好为j的个数,因子容斥即可 

//一开始想设dp[i][j]为n个选i个gcd为j的方案数
//但是Wa13了才发现i可以取很大
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int mod=1e9+7;
int cnt[100005];
int a[100005];
ll dp[100005];
ll jc[100005];
ll jv[100005];
//ll getc(ll a,ll b)
//{
//	if(a<b)return 0;
//	return 1ll*jc[a]*jv[b]%mod*jv[a-b]%mod;
//}
ll qmod(ll a,ll b)
{
	ll res=1;while(b)
	{
		if(b&1)res=res*a%mod;
		a=a*a%mod;b=b>>1;
	}return res;
}
int main()
{
//	jc[0]=jv[0]=1;
//	for(int i=1;i<=100000;i++)jc[i]=jc[i-1]*i%mod;
//	jv[100000]=qmod(jc[100000],mod-2);
//	for(int i=99999;i>=1;i--)jv[i]=jv[i+1]*(i+1)%mod;
	int n;scanf("%d",&n);
	for(int i=1;i<=n;i++)scanf("%d",&a[i]),cnt[a[i]]++;
	
	for(int i=1;i<=100000;i++)
	{
		for(int j=2*i;j<=100000;j+=i)
			cnt[i]+=cnt[j];
	}
	ll ans=0;
//	for(int i=1;i<=60;i++)
//	{
//		for(int j=100000;j>=1;j--)
//		{
//			dp[i][j]=getc(cnt[j],i);
//			for(int k=2*j;k<=100000;k+=j)
//				dp[i][j]=(dp[i][j]-dp[i][k]+mod)%mod;
//		}
//		ans=(ans+dp[i][1])%mod;
//	}
	for(int j=100000;j>=1;j--)
	{
		dp[j]=(qmod(2,cnt[j])-1+mod)%mod;
		for(int k=2*j;k<=100000;k+=j)
		{
			dp[j]=(dp[j]-dp[k]+mod)%mod;
		}
	}
	ans=(ans+dp[1])%mod;
	printf("%I64d\n",ans%mod);	
} 

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
容斥原理是一种计数方法,用于解决集合中某些对象的数目的问题。它的基本思想是先计算包含于某个内容中的所有对象的数目,然后排除重复计算的对象,以确保计数结果既不遗漏又没有重复。在容斥原理的应用中,通常需要先求出所有包含的区间,然后使用欧拉函数求和,并进行一些补充操作,例如乘以某个系数或减去一个常数。在使用容斥原理时,需要注意一些细节,例如在枚举因子时要注意使用最小公倍数(LCM),而不是直接相乘。如果容斥问题中的集合可能包含0,还需要特殊处理。至于如何使用容斥原理在MATLAB中求解具体的问题,我需要更多的上下文信息才能给出具体的指导。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [容斥原理](https://blog.csdn.net/ling_wang/article/details/80488797)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [容斥原理练习记录](https://blog.csdn.net/z631681297/article/details/81318279)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值