- 博客(3)
- 收藏
- 关注
原创 Temporal Knowledge Graph Reasoning with Historical Contrastive Learning
时间知识图谱在事件预测方面展现出巨大的潜力,它有效地存储和模拟动态关系。但是,现有的时间知识图谱推理方法通常需要事件具有一定的周期性或重复性,这对于那些没有历史交互记录的实体未来事件的预测提出了挑战。因为很多时候,当前的情况是历史信息和一些未被察觉的深层次因素共同作用的结果。针对这个问题,我们提出了一个基于历史对比学习的新模型——Contrastive Event Network (CENET)。CENET能够学习到事件的历史和非历史依赖关系,从而判断哪些实体最有可能与特定查询相匹配。
2024-04-19 18:20:26 1295
原创 Prompting ChatGPT in MNER: Enhanced Multimodal Named Entity Recognition with Auxiliary Refined Knowl
社交媒体上的多模态命名实体识别(MNER)旨在通过融合基于图像的线索来增强文本实体预测。现有的研究主要集中在最大化相关图像信息的利用或将外部知识从显式知识库中融入。然而,这些方法要么忽视向模型提供外部知识的必要性,要么遇到检索到的知识中高度冗余的问题。本文提出了PGIM,这是一个两阶段的框架,旨在利用ChatGPT作为隐式知识库,并使其能够启发式地生成辅助知识以实现更高效的实体预测。具体而言,PGIM包括一个多模态相似示例感知模块,从少量预定义的人工样本中选择合适的示例。
2024-04-12 21:31:22 1280
原创 中科院计算机算法设计与分析作业参考(刘玉贵)
每点的DFN、L值:A1,1、B2,1、C3,1、D4,4、E5,1、F6,5、G7,5。2) 证明:任给c,当n>2c时,logn>c,从而n2logn>=cn2,同上。答1+2+..+n-1=n(n-1)/2。1.讲义习题一: 第1(执行步改为关键操作数)、第2、3、6、7题。n(n-1)/2,每次比较都交换,交换次数n(n-1)/2。6 答:logn,n2/3,20n,4n2,3n,n!4.考虑下面的每对函数f(n)和g(n) ,比较他们的阶。7 答:1)6+n 2)2方法一答:2n-2次。
2024-03-20 18:25:57 345 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人