每日一道算法,提高脑力。第四天,选择排序。
选择排序介绍
它的基本思想是:
首先在未排序的数列中找到最小(or最大)元素,然后将其存放到数列的起始位置;接着,再从剩余未排序的元素中继续寻找最小(or最大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
选择排序实现
下面以数列{20,40,30,10,60,50}为例,演示它的选择排序过程(如下图)。
排序流程
- 第1趟: i=0。找出a[1…5]中的最小值a[3]=10,然后将a[0]和a[3]互换。 数列变化: 20,40,30,10,60,50 – > 10,40,30,20,60,50
- 第2趟: i=1。找出a[2…5]中的最小值a[3]=20,然后将a[1]和a[3]互换。 数列变化: 10,40,30,20,60,50 – > 10,20,30,40,60,50
- 第3趟: i=2。找出a[3…5]中的最小值,由于该最小值大于a[2],该趟不做任何处理。
- 第4趟: i=3。找出a[4…5]中的最小值,由于该最小值大于a[3],该趟不做任何处理。
- 第5趟: i=4。交换a[4]和a[5]的数据。 数列变化: 10,20,30,40,60,50 – > 10,20,30,40,50,60
选择排序的时间复杂度和稳定性
选择排序时间复杂度
选择排序的时间复杂度是O(N2)。
假设被排序的数列中有N个数。遍历一趟的时间复杂度是O(N),需要遍历多少次呢? N-1!因此,选择排序的时间复杂度是O(N2)。
选择排序稳定性
选择排序的稳定性是有一些争议的,不过一般提到排序算法,往往默认是数组实现,所以通常认为选择排序是不稳定的。
- 回顾:什么是排序算法的稳定性?
假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
- 数组实现和链表实现的差异
用数组实现的选择排序是不稳定的,用链表实现的选择排序是稳定的。不过,一般提到排序算法时,大家往往会默认是数组实现,所以选择排序是不稳定的。
- 此外,排序算法的稳定性也是可以改变的,只是需要额外的时间和空间
有很多办法可以将任意排序算法变成稳定的,但是,往往需要额外的时间或者空间;而我们默认情况谈算法的稳定性是不考虑这种实现的。
代码实现
package com.zxn;
/**
* @author zxn
* @ClassName SelectSort
* @Description
* @createTime 2023年04月26日 20:33:00
*/
public class SelectSort {
public static void main(String[] args) {
int[] a = {20,40,30,10,60,50};
System.out.print("排序后:");
selectSort(a);
for (int i = 0; i < a.length; i++) {
System.out.println(a[i]);
}
}
/**
*
* @param a 待排序数组
*/
public static void selectSort(int[] a){
int i; // 有序区的末尾位置
int j; // 无序区的起始位置
int min; // 无序区中最小元素位置
for(i=0; i<a.length; i++) {
min=i;
// 找出"a[i+1] ... a[n]"之间的最小元素,并赋值给min。
for(j=i+1; j<a.length; j++) {
if(a[j] < a[min])
min=j;
}
// 若min!=i,则交换 a[i] 和 a[min]。
// 交换之后,保证了a[0] ... a[i] 之间的元素是有序的。
if(min != i) {
int tmp = a[i];
a[i] = a[min];
a[min] = tmp;
}
}
}
}
排序后:
10
20
30
40
50
60
核心&总结
- 第一次默认无已排序部分
- 每次从待排序中找到最小值,然后放置在待排序数组开头,放置前比较是否需要换位置
- 注意循环语句的终止条件和起始条件