OpenWebtext数据集

OpenWebtext是GPT2训练用的文本数据集,旨在通过大量数据训练模型以实现高质量文本生成。GPT2的生成过程借助huggingface库,其模型基于纯解码器结构,包含12层,不同于BERT的encoder-decoder结构。CLM,即Casual Language Model,是一种预测下一个词的任务,与GPT的next token prediction相似。本文简要介绍了OpenWebtext数据集及其在GPT系列模型中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

paper:Aaron Gokaslan, Vanya Cohen, Pavlick Ellie, and Stefanie Tellex. Openwebtext corpus, 2019.

用于GPT2训练的文本数据,GPT2主要是生成文本的,只有足够多的数据训练的模型才能学会说话,生成的才有可能是通顺的。GPT2文本生成可以采用huggingface中代码直接进行训练,但其中需要再填个坑哈。如下

python run_clm.py \
    --model_name_or_path gpt2 \
    --dataset_name wikitext \
    --dataset_config_name wikitext-2-raw-v1 \
    --per_device_train_batch_size 8 \
    --per_device_eval_batch_size 8 \
    --do_train \
    --do_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小李飞刀李寻欢

您的欣赏将是我奋斗路上的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值