调用火山大模型的方法

要调用火山引擎提供的大模型,如火山,通义千问等,通常需要通过火山引擎的API接口来进行。火山引擎是阿里云的一部分,提供了多种大模型的服务,包括但不限于通义千问这样的语言模型。
调用火山引擎大模型的一般步骤:
1. 注册账号:
•  访问火山引擎官网(https://volcengine.com/)并注册一个账号。
2. 创建项目:
•  登录后,在控制台创建一个新的项目。
3. 获取API密钥:
•  在火山引擎的控制台获取API密钥(Access Key ID 和 Access Key Secret)。
4. 安装SDK或使用API:
•  可以选择安装火山引擎提供的SDK,或者直接使用HTTP API进行调用。
5. 编写代码:
•  使用SDK或API发送请求并处理响应。
示例:使用Python SDK调用火山引擎大模型
这里以Python为例,展示如何调用火山引擎提供的大模型服务。请注意,具体的API和SDK可能会有所不同,因此请务必参考火山引擎的官方文档获取最新的信息。
步骤 1:安装SDK
首先,你需要安装火山引擎的Python SDK。你可以通过pip来安装:
pip install volcengine-sdk

步骤 2:编写代码
接着,你可以编写Python脚本来调用火山引擎的大模型API。下面是一个简单的示例:
import volcengine
from volcengine.auth import Auth
from volcengine.service import Service

# 替换为你的Access Key ID 和 Access Key Secret
access_key_id = 'your_access_key_id'
access_key_secret = 'your_access_key_secret'

# 创建认证对象
auth = Auth(access_key_id, access_key_secret)

# 创建服务对象
service = Service('ai-platform', auth)

# 构建请求
request = {
    "model": "qwen",  # 模型名称
    "prompt": "你好,通义千问!",  # 输入提示
    "max_tokens": 100,  # 最大输出长度
    "top_p": 0.95,  # top-p 参数
    "temperature": 0.7  # 温度参数
}

# 发送请求
response = service.invoke(request)

# 处理响应
if response.status_code == 200:
    result = response.json()
    print(result['text'])  # 输出模型的回答
else:
    print(f"Error: {response.status_code} - {response.text}")

注意事项:
1. API密钥:请确保你已经获取到了有效的API密钥(Access Key ID 和 Access Key Secret)。
2. 模型名称:请根据火山引擎提供的文档确定正确的模型名称。
3. 请求参数:请求参数可能会有所不同,请参考火山引擎的官方文档以获得准确的信息。
4. 错误处理:请确保你的代码能够妥善处理各种可能的错误情况。
5. 权限和限制:使用火山引擎的服务可能需要特定的权限,并且可能有一些调用次数或频率的限制。
 

### 如何使用 CherryStudio 调用火山引擎 OpenAPI 使用 DeepSeek 大模型 #### 创建网关访问密钥 要在 CherryStudio 中调用火山引擎的 OpenAPI 并使用 DeepSeek 大模型,第一步是在边缘大模型网关产品的控制台创建网关访问密钥。这一步骤允许用户获取必要的认证凭证来安全地调用 AI 服务[^1]。 #### 获取请求示例代码与 API Key 完成上述设置之后,可以得到大模型网关 OpenAPI 请求示例代码以及对应的 API Key。这些资源对于后续集成工作至关重要,确保保存好所获得的信息以便稍后使用。 #### 配置用于 DeepSeek 调用的模型提供商 接下来,在 CherryStudio 内部环境中配置已创建好的网关访问密钥,指定其作为 DeepSeek 模型调用的服务提供者。这一过程通常涉及在应用程序中输入或上传之前从控制台下载下来的 API 密钥和其他必要参数。 #### 发起请求至 DeepSeek 模型 最后,通过编写简单的 HTTP POST 请求并附带适当负载数据结构向目标 URL 地址发送查询命令。下面是一个 Python 实现的例子: ```python import requests import json url = "https://api.volcengine.com/v1/deepseek/inference" headers = { 'Content-Type': 'application/json', 'Authorization': 'Bearer YOUR_API_KEY' } data = { "prompt": "你好", } response = requests.post(url, headers=headers, data=json.dumps(data)) print(response.json()) ``` 此段脚本展示了如何构建一个基本接口以交互方式询问 DeepSeek 模型,并打印返回的结果。请注意替换 `YOUR_API_KEY` 和其他特定于项目的变量值为实际使用的键和路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小李飞刀李寻欢

您的欣赏将是我奋斗路上的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值