【java】斐波那契数列-从暴力递归到动态规划

265 篇文章 2 订阅
235 篇文章 0 订阅

什么是动态规划

动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。

从斐波那契数列数列看如何从暴力递归到动态规划

什么是菲波那切数列

菲波那切数列的规律非常简单:从第三项开始,每一项都等于前两项之和。具体来说,数列的前几项是:0、1、1、2、3、5、8、13、21、34、……

暴力递归解法

 /**
     * 暴力递归
     * @param N
     * @return
     */
    public static int f(int N ){
        if (N == 1 || N == 2){
            return 1;
        }
        return f(N -1)+ f(N - 2);
    }

暴力递归写法很简单,但里面有个问题.
例如:我们计算f(6) 需要计算f(5) + f(4)
计算f(5) = f(4) + f(3)
发现没 f(4) 就要跑了两次。因此我们就想到可以用缓存把状态记录下来

递归+缓存

    /**
     * 
     * @param N
     * @return
     */
    public static int feibo(int N){
        int[] ints = new int[N + 1];
        int ans = process(N,ints);
        return ans;
    }


  /**
     * 状态缓存
     * @param N
     * @param
     * @return
     */
    public static int process(int N, int[]ans){
        if (N == 1 || N == 2){
            return 1;
        }
        if (ans[N] == 0){
            ans[N] =  process(N -1)+ process(N - 2);
        }

        return ans[N];
    }

动态规划解法

动态规划解法和递归加缓存的区别在于,每一次要计算的 F(N) 的值所依赖的 F(N - 1) 和 F(N - 2) 一定已经被计算出来了。
直接上代码

    /**
     * 
     * @param N
     * @param
     * @return
     */
    public static int f(int N, int[]ans){
       ans[1] = 1;
       ans[2] = 1;

       for (int i = 3; i <= N ;i++){
           ans[i] = ans[i - 1] + ans[i - 2];
       }

       return ans[N];
    }

    /**
     *
     * @param N
     * @return
     */
    public static int feibo(int N){
        int[] ints = new int[N + 1];
        int ans = f(N,ints);
        return ans;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值