java---树与图的BFS广度优先遍历---八数码(每日一道算法2022.8.26)

题目:
请添加图片描述

输入:
2 3 4 1 5 x 7 6 8
输出:
19
public class 树与图的BFS广度优先遍历_八数码 {
    public static void main(String[] args) {
        //初始化,将接收的数据去除空格
        Scanner in = new Scanner(System.in);
        String start = in.nextLine().replaceAll(" ", "");

        System.out.println(bfs(start));
    }

    public static int bfs(String start) {
        //end记录最终要达到的结果,bfs经典写法,q是队列,d记录次数
        //记得最开始先把end推进去,要不然队列是空的,d也要先记录一下end是第0次,也就是初始状态
        //dx和dy用来枚举x向四个方向移动,分别是(0,1)向下,(0,-1)向上,(1,0)向右,(-1,0)向左
        String end = "12345678x";

        Queue<String> q = new ArrayDeque<>();
        HashMap<String, Integer> d = new HashMap<>();
        q.add(start);
        d.put(start, 0);
        int[] dx = {0, 0, 1, -1}, dy = {1, -1, 0, 0};

        //循环队列不空,取出队头,用distance记录当前移动次数
        while (q.size() > 0) {
            String t = q.poll();
            int distance = d.get(t);

            if (t.equals(end)) {return distance;}

            //转换公式,将一维下标转换为3*3的矩阵的二维下标,x是行,y是列
            //一维转二维:x = k/3, y = k%3
            //二维转一维:k = x*3+y
            int k = t.indexOf("x");
            int x = k/3, y = k%3;

            //枚举四个方向, 判断在不在边界内
            for (int i = 0; i<4; i++) {
                int a = x + dx[i], b = y + dy[i];
                if (a>=0 && b>=0 && a<3 && b<3) {
                    t = swap(t, k, a*3+b);    //根据下标将字符串中的两个字符swap
                    if (d.get(t) == null) {
                        d.put(t, distance+1);
                        q.add(t); //存入queue
                    }
                    t = swap(t, k, a*3+b);    //记得这里要还原回来哈
                }
            }
        }
        //如果全部枚举结束,还没有找到路径的话,说明路径不存在,返回-1
        return -1;
    }


    //将String中的两个值进行swap,返回更改后的String,再再再次吐槽java没有swap啊啊啊啊啊
    public static String swap(String t, int x, int y) {
        char[] t_arr = t.toCharArray();
        char temp = t_arr[x]; t_arr[x] = t_arr[y]; t_arr[y] = temp;
        StringBuilder sb = new StringBuilder();
        for (char i : t_arr) {sb.append(i);}
        return sb.toString();
    }
}
小知识点(转换公式):
一维下标:k
二维下标:x是行,y是列

一维数组下标转二维数组下标:x = k/3, y = k%3
二维数组下标转一维数组下标:k = x*3+y
(这里的3是根据二维中行的长度来决定的)

声明:算法思路来源为y总,详细请见https://www.acwing.com/
本文仅用作学习记录和交流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值