word2vec一些基本用法

本文介绍了word2vec的基本用法,通过Python实现对词向量的训练和应用,包括连续词袋模型(CBOW)和skip-gram模型的讲解,帮助理解如何利用word2vec进行词汇的语义表示。
摘要由CSDN通过智能技术生成
# -*- coding: utf-8 -*-
# @Time   : 2020/4/15 9:34
# @Author : Administrator
# @Project : chenhong
# @FileName: test.py
# @Desc : ==============================================
# Please prepare your document description
# ======================================================
import gensim
import numpy as np
import jieba
from scipy.linalg import norm
from gensim.models import KeyedVectors,word2vec,Word2Vec
#模型加载
model = gensim.models.Word2Vec.load('wiki.zh.text.model')
# model = KeyedVectors.load_word2vec_format('wiki.zh.text.vector')  保存方式2的加载方式

#模型保存
#model.save(wiki.zh.text.model)  #保存为模型的方法保存词向量
#model.wv.save_word2vec_format(wiki.zh.text.vector, binary=False)   #保存为二进制的词向量

#(1)求“漂亮”的向量:
piaoliang = model['漂亮']
print(piaoliang)
print(len(piaoliang))

#(2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值