# -*- coding: utf-8 -*-
# @Time : 2020/4/15 9:34
# @Author : Administrator
# @Project : chenhong
# @FileName: test.py
# @Desc : ==============================================
# Please prepare your document description
# ======================================================
import gensim
import numpy as np
import jieba
from scipy.linalg import norm
from gensim.models import KeyedVectors,word2vec,Word2Vec
#模型加载
model = gensim.models.Word2Vec.load('wiki.zh.text.model')
# model = KeyedVectors.load_word2vec_format('wiki.zh.text.vector') 保存方式2的加载方式
#模型保存
#model.save(wiki.zh.text.model) #保存为模型的方法保存词向量
#model.wv.save_word2vec_format(wiki.zh.text.vector, binary=False) #保存为二进制的词向量
#(1)求“漂亮”的向量:
piaoliang = model['漂亮']
print(piaoliang)
print(len(piaoliang))
#(2
word2vec一些基本用法
最新推荐文章于 2024-09-06 19:51:15 发布
本文介绍了word2vec的基本用法,通过Python实现对词向量的训练和应用,包括连续词袋模型(CBOW)和skip-gram模型的讲解,帮助理解如何利用word2vec进行词汇的语义表示。
摘要由CSDN通过智能技术生成