OpenCV_分水岭算法

本文深入探讨了OpenCV库中的分水岭算法,这是一种用于图像分割的强大工具,常用于处理二值图像,将图像区域分割成不同的连通组件,类似于地理上的分水岭原理。
摘要由CSDN通过智能技术生成

分水岭算法参考链接

def watershed_demo(image):

        # 去噪点
        print(image.shape)
        blurred = cv.pyrMeanShiftFiltering(image, 10, 100)

        # 图像二值化
        gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
        ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)

        # 形态学操作, 去掉些多余部分(噪点)
        kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
        mb = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel, iterations=3)
  
        # 膨胀处理, 可以得到一大块的背景区域(这个部分一定包含了图像前景, 并一定比前景大(我们称作图像背景))
        sure_bg = cv.dilate(mb, kernel, iterations=3)

        # 距离变换, 得到图像骨骼
        '''
        参数解释:
        src:输入的图像,一般为二值图像
        distanceType:所用的求解距离的类型,有CV_DIST_L1, CV_DIST_L2, CV_DIST_C
        mask_size:距离变换掩模的大小,可以是 3 或 5. 对 CV_DIST_L1 或 CV_DIST_C 的情况,参数值被强制设定为 3
        '''
        # 如果想要展示这结果, 我们需要进行归一化处理: 在整数表示的颜色空间中,数值范围是0-255,但在浮点数表示的颜色空间中,数值范围是0-1.0,所以要把0-255归一化
        # 若是不做归一化处理,数值大于1的都会变为1.0处理, 在浮点数表示的颜色空间, 就是纯白... 所以如果不做归一化, 会是一张普通的二值化图像
        dist = cv.distanceTransform(mb, cv.DIST_L2, 3)
        '''
        展示骨骼图像:
        dist_output = cv.normalize(dist,0,1.0,cv.NORM_MINMAX)   # 归一化的距离图像数组
       cv.imshow("distinct-t",dist_output*50)                  # 归一化的图像一般值都很小, 小数点后2~3位的那种, 所以*个系数看起来清楚点, 不然一片黑                  
        '''

        # 对图像骨骼进行二值化, 再截取, 得到骨骼中心(这个部分一定是图像前景, 称为种子, 算法实现的时候会从这里开始漫水)
        ret, sure_fg = cv.threshold(dist, dist.max()*0.6, 255, cv.THRESH_BINARY)

        # 保持色彩空间一致才能进行运算,现在是背景空间为整型空间,前景为浮点型空间,所以进行转换
        surface_fg = np.uint8(sure_fg)
        # 这个 unknown 区包含的图像有可能是前景, 有可能是背景, 分割线也一定在这个区域中
        unknown = cv.subtract(sure_bg, surface_fg)

        # 在讲这个函数之前要讲讲分水岭算法的判定标准: 
        '''
        判定依据: 给它一个图像大小的 int32 数组(Markers)
        判定条件: 这个数组中 0 对应的像素位置表示未知(分割线就在其中), 正整数 对应的像素位置表示前景或背景(种子, 又称注水点)

        那么 connectedComponents 这个函数干了件什么事情?
        返回: 第一参数:连通的区域数 第二参数: int32 的标记数组
        标记条件: 前景为被标记成正整数; 其他区域全标记成 0
        注记: 需要注意的是, 由于实际上我们输入的是 surface_fg, 因此其他区域指的是 unknown + sure_bg 区域
        '''
        ret, markers = cv.connectedComponents(surface_fg)

        '''
        通过上面的注释我们会发现实际上: connectedComponents 返回的 Markers 是和分水岭算法需要的 Markers 是由矛盾的:
        这体现在: 分水岭算法需要的 Markers 应该只有 Unknown 区为 0; 而实际上 connectedComponents 提供的 Markers 中 Unknown + sure_bg 区域均为 0
        下面这两行代码就是为了解决这个矛盾
        '''
        markers = markers + 1           # sure_bg 区置为 1
        markers[unknown==255] = 0       # unknown 是之前得到的那张二值化图; 其中 unknown 区用白色显示; 这行代码意思是将 unknown 图中显示为白色的像素点坐标在 markers 中置成 0

        # 至此, 我们就得到了符合分水岭算法的 Markers
        # 分水岭算法会将找到的分割线在 Markers 中置成 -1
        markers = cv.watershed(image, markers=markers)
        image[markers==-1] = [0, 0, 255]
        cv.imshow("result", image)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值