题目描述
给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。
输入格式
输入文件中仅包含一行两个整数a、b,含义如上所述。
输出格式
输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。
输入输出样例
输入 #1
1 99
输出 #1
9 20 20 20 20 20 20 20 20 20
说明/提示
30%的数据中,a<=b<=10^6;
100%的数据中,a<=b<=10^12。
.
.
.
.
.
.
分析
首先区间[a,b]内的数量可转化为[1,b]-[1,a-1]。考虑求一个数码出现的次数,比如1出现的次数。我们首先想爆搜怎么写,然后加一个记忆化即可。
对于一个长度为l的数,从高位到低位枚举它每一位上的数字,然后计算1出现的次数。哪些东西要记到状态里去?第一,当前的位置l一定要记的。第二,你要记录当前数位有没有比num[l]小,是一个bool值,因为这个用来确定你枚举下一位的范围。第三,要记录当前1已经出现的次数。第四,由于前导0不能算,还需记录之前是否是前导0,也是一个bool值。
.
.
.
.
.
.
程序:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
long long f[20][2][20][2];
int num[20];
long long dfs(int l,bool bz1,int sum,bool bz2,int d)
{
long long x=0;
if (l==0) return sum;
if (f[l][bz1][sum][bz2]!=-1) return f[l][bz1][sum][bz2];
for (int i=0;i<=9;i++)
{
if (!bz1&&i>num[l]) break;
x+=dfs(l-1,bz1||(i<num[l]),sum+((!bz2||i)&&(i==d)),bz2&&(i==0),d);
}
return f[l][bz1][sum][bz2]=x;
}
long long work(long long x,int d)
{
int l=0;
while (x!=0)
{
num[++l]=x%10;
x/=10;
}
memset(f,-1,sizeof(f));
return dfs(l,0,0,1,d);
}
int main()
{
long long a,b;
scanf("%lld%lld",&a,&b);
for (int i=0;i<=9;i++)
printf("%lld ",work(b,i)-work(a-1,i));
return 0;
}