过河卒

题目描述

棋盘上A点有一个过河卒,需要走到目标B点。卒行走的规则:可以向下、或者向右。同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,A点(0, 0)、B点(n, m)(n, m为不超过20的整数),同样马的位置坐标是需要给出的。

现在要求你计算出卒从A点能够到达B点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入输出格式

输入格式:

一行四个数据,分别表示B点坐标和马的坐标。

输出格式:

一个数据,表示所有的路径条数。

输入输出样例

输入样例#1:  复制
6 6 3 3
输出样例#1:  复制
6

说明

结果可能很大!


思路,刚开始很自然的就想到了搜!结果TLE了3个点,然后就画表格推出DP:f[i,j]:=f[i-1,j]+f[i,j-1];

var
 f:array[0..101,0..101]of int64;
 map:array[0..101,0..101]of boolean;
 bx,by,cx,cy,i,j,ans:longint;
function max(aa,bb:longint):longint;
begin
 if aa>bb then exit(aa)
          else exit(bb);
end;
begin
 fillchar(map,sizeof(map),true);
 read(bx,by,cx,cy);
 map[cx,cy]:=false; map[cx-1,cy-2]:=false;
 map[cx+1,cy-2]:=false; map[cx-2,cy-1]:=false;
 map[cx+2,cy-1]:=false; map[cx-2,cy+1]:=false;
 map[cx-1,cy+2]:=false; map[cx+1,cy+2]:=false;
 map[cx+2,cy+1]:=false;


 f[0,0]:=1;
  for i:=1 to bx do
  if map[i,0] then f[i,0]:=f[i-1,0];
   for j:=1 to by do
  if map[0,j] then f[0,j]:=f[0,j-1];
  for i:=1 to bx do
   for j:=1 to by do
    if map[i,j] then
    f[i,j]:=f[i-1,j]+f[i,j-1];
 write(f[bx,by]);
end.


过河卒问题是一个经典的计算机科学问题,源于棋盘游戏中的象棋规则。在国际象棋中,"过河卒"(Pawn)有一个特殊的移动规则,即它们可以向前两格再斜向前进一格,如果这一步恰好将对方的棋子置于攻击位置,则那个棋子会被吃掉。这个问题通常用于演示递归算法和回溯法。 在C语言代码中,解决过河卒问题的一个简单版本可能会这样实现: ```c #include <stdio.h> // 棋盘大小和初始棋子位置 #define BOARD_SIZE 8 // 定义一个表示棋子状态的结构体 typedef enum { EMPTY, YOUR_PAWN, THEIR_PAWN } PieceState; // 检查是否能吃到对方的棋子 PieceState checkCapture(int x, int y) { // 省略具体的棋盘检查逻辑... } // 核心的递归函数 void explore(int x, int y, PieceState board[BOARD_SIZE][BOARD_SIZE]) { if (checkCapture(x, y)) { printf("Eat the pawn at (%d, %d)\n", x, y); } else { // 递归探索所有可能的位置 for (int dx = -1; dx <= 1; dx++) { for (int dy = -1; dy <= 1 && abs(dx) + abs(dy) == 2; dy++) { explore(x + dx, y + dy, board); } } } } int main() { // 初始化一个8x8的棋盘,假设你的过河卒在(0, 1) PieceState board[BOARD_SIZE][BOARD_SIZE]; board[0][1] = YOUR_PAWN; // 开始搜索并打印结果 explore(0, 1, board); return 0; } ``` 在这个示例中,`explore`函数会尝试从当前位置出发的所有合法步骤,并通过`checkCapture`判断是否有吃子情况。然而,实际的`checkCapture`函数需要考虑到棋盘边界、其他棋子的存在以及更复杂的规则。这个代码只是一个简化版,实战中的C语言代码会更复杂一些。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值