题目描述
某收费有线电视网计划转播一场重要的足球比赛。他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点。
从转播站到转播站以及从转播站到所有用户终端的信号传输费用都是已知的,一场转播的总费用等于传输信号的费用总和。
现在每个用户都准备了一笔费用想观看这场精彩的足球比赛,有线电视网有权决定给哪些用户提供信号而不给哪些用户提供信号。
写一个程序找出一个方案使得有线电视网在不亏本的情况下使观看转播的用户尽可能多。
输入输出格式
输入格式:
输入文件的第一行包含两个用空格隔开的整数N和M,其中2≤N≤3000,1≤M≤N-1,N为整个有线电视网的结点总数,M为用户终端的数量。
第一个转播站即树的根结点编号为1,其他的转播站编号为2到N-M,用户终端编号为N-M+1到N。
接下来的N-M行每行表示—个转播站的数据,第i+1行表示第i个转播站的数据,其格式如下:
K A1 C1 A2 C2 … Ak Ck
K表示该转播站下接K个结点(转播站或用户),每个结点对应一对整数A与C,A表示结点编号,C表示从当前转播站传输信号到结点A的费用。最后一行依次表示所有用户为观看比赛而准备支付的钱数。
输出格式:
输出文件仅一行,包含一个整数,表示上述问题所要求的最大用户数。
输入输出样例
输入样例
5 3
2 2 2 5 3
2 3 2 4 3
3 4 2
输出样例
2
分析
首先,我一开始就想到了树形DP(这不废话嘛题目都说是一棵树了你还想怎样啊)
然后呢,我想到了正解(结果被我旁边的某同志坑了)
好的切入正题:
设fi,j表示以i为根的子树连接j个客户终端(下称叶节点)所能余下的最大金钱
于是,我们遍历这棵树的时候,就记录一个numbersum(下称ns)和numberto(下称nv)
ns表示当前这个子树遍历到的叶节点总数量,nv表示以当前这个子树要遍历的节点为根的子树的叶节点的总数
所以,DP的转移方程为:
f当前节点(下称node),j(倒着枚举ns,更新连接j个叶节点的最大值)=max{fnode,j(本身),fnode,j-k(正着枚举1~min{nv,j>,表示从当前要遍历的点中取k个点连接)+fto(当前要遍历的点),k-wi(连接花费)}
整个方程即:
j:ns~0
k:1~min(nv,j)
fnode,j=max(fnode,j,fnode,j-k+fto,k-wi)
我真佩服自己的表达能力,作文零分
#include <iostream>
#include <cstdio>
#define rep(i,a,b) for (i=a;i<=b;i++)
using namespace std;
int n,m;
int list[3001],next[3001],u[3001],v[3001],w[3001];
int f[3001][3001];
void init()
{
int i,j,p,k=0;
scanf("%d%d",&n,&m);
rep(i,1,n-m)
{
scanf("%d",&p);
rep(j,1,p)
{
k++;
scanf("%d",&v[k]);
scanf("%d",&w[k]);
u[k]=i;
next[k]=list[u[k]];
list[u[k]]=k;
}
}
rep(i,1,n)
rep(j,1,n)
f[i][j]=-1147483647;
rep(i,n-m+1,n)
scanf("%d",&f[i][1]);
}
int dfs(int node)
{
int i=list[node],j,k,ns=0,nv;
if (i==0) return 1;
while (i>0)
{
nv=dfs(v[i]);
ns+=nv;
for (j=ns;j>=0;j--)
rep(k,1,min(j,nv))
f[node][j]=max(f[node][j],f[node][j-k]+f[v[i]][k]-w[i]);
i=next[i];
}
return ns;
}
void print()
{
int i;
for (i=n;i>=1;i--)
if (f[1][i]>=0)
{
printf("%d",i);
return;
}
}
int main()
{
init();
dfs(1);
print();
}