题目链接
一道树形DP,但是它的想法还是可以称之为树形背包,依旧是从大数往下推,我的这一道题中有对树形背包的完整讲解,这里呢,就是DP的列写得怎么样列写?dp[i][j],以i号节点为根节点时,取j个人的时候,需要的代价,我们希望最后的代价为“>=0”的。
完整代码:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
using namespace std;
typedef long long ll;
const int maxN=3005;
int N, M;
int dp[maxN][maxN], val[maxN];
struct eddge
{
int nex, val;
eddge(int a=0, int b=0):nex(a), val(b) {}
};
vector<eddge> vt[maxN];
int dfs(int u)
{
dp[u][0]=0;
if(u>N-M) { dp[u][1]=val[u]; return 1; }
int son=0, tmp=0, len=(int)vt[u].size();
for(int i=0; i<len; i++)
{
int v=vt[u][i].nex, cost=vt[u][i].val;
son+=(tmp=dfs(v));
for(int j=son; j>=1; j--)
{
for(int k=1; k<=tmp; k++)
{
if(j>=k) dp[u][j]=max(dp[u][j], dp[u][j-k]+dp[v][k]-cost);
}
}
}
return son;
}
int main()
{
scanf("%d%d", &N, &M);
for(int i=1; i<=(N-M); i++)
{
int e1, e2, e3;
scanf("%d", &e1);
while(e1--)
{
scanf("%d%d", &e2, &e3);
vt[i].push_back(eddge(e2, e3));
}
}
for(int i=(N-M+1); i<=N; i++) scanf("%d", &val[i]);
for(int i=1; i<=N; i++) for(int j=1; j<=N; j++) dp[i][j]=-1000000;
dfs(1);
for(int i=M; i>=0; i--)
{
if(dp[1][i]>=0)
{
printf("%d\n", i);
break;
}
else if(i==0)
{
printf("0\n");
break;
}
}
return 0;
}