[离散化][状态压缩][集合][数论][图论][容斥原理]二分图计数

通过分析,该博客探讨了如何利用容斥原理解决二分图中完备匹配数的问题。当图中节点与特定数量的其他节点相连时,传统方法难以直接求解,但逆向思考能简化问题。利用公式F(S)=Σ(-1)^|S|*h(S1,S),其中S1是S的子集,h(S1,S)表示S1匹配的方案,S乘以另一侧可匹配的点数。博客重点讨论了如何处理重复计算的策略。" 126284034,11021967,移动端IM的HTTP SSO单点登录接口解析,"['网络协议', '身份认证', 'HTTP']
摘要由CSDN通过智能技术生成

题目描述

这里写图片描述
这里写图片描述

分析

很明显是要求二分图的完备匹配数
但是n个点都与m-1个点相连,很难运用这个条件求出,但是可以想相反条件,即容斥原理
那么容易得出:
F(S)=Σ(-1)^|S|*h(S1,S)
S1⊆S
h(S1,S)表示S1与和自己无法匹配的点匹配,S任意匹配。
都很容易求,S1只有一种匹配方案,S只用乘上另一边有多少个点即可
然后重复计算问题思考一下,(-1)^|S|就是解决这个的

#include <iostream>
#include <cstdio>
#include <algorithm>
#define rep(i,a,b) for (i=a;i<=b;i++)
const lon
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值