[多项式] COGS 有标号的二分图计数系列

我是抄的 orzz

QAQ_bipartite_one

k=0nCkn2(nk)k

注意这里是 2(nk)k 不是 2(nk)+k 怎么卷?
2(nk)k=(2)n2(2)k2(2)(nk)2

#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
typedef long long ll;

const int P=998244353;
const int G=3;
const int SQRT=116195171;
const int INV=(P+1)>>1;
const int N=300005;

inline ll Pow(ll a,int b){
  ll ret=1; for (;b;b>>=1,a=a*a%P) if (b&1) ret=ret*a%P; return ret;
}
inline ll Inv(ll a){
  return Pow(a,P-2);
}
ll fac[N];
inline void Init(int n){
  fac[0]=1; for (int i=1;i<=n;i++) fac[i]=fac[i-1]*i%P;
}


int num;
int w[2][N];
inline void Pre(int m){
  num=m;
  int g=Pow(G,(P-1)/m);
  w[0][0]=w[1][0]=1;
  for (int i=1;i<num;i++) w[1][i]=(ll)w[1][i-1]*g%P;
  for (int i=1;i<num;i++) w[0][i]=w[1][num-i];
}

int R[N];

inline void FFT(int n,int *a,int r){
  for (int i=0;i<n;i++) if (i<R[i]) swap(a[i],a[R[i]]);
  for (int i=1;i<n;i<<=1)
    for (int j=0;j<n;j+=(i<<1))
      for (int k=0;k<i;k++){
    int x=a[j+k],y=(ll)a[j+k+i]*w[r][num/(i<<1)*k]%P;
    a[j+k]=(x+y)%P; a[j+i+k]=(x+P-y)%P;
      }
  if (!r) for (int i=0,inv=Pow(n,P-2);i<n;i++) a[i]=(ll)a[i]*inv%P;
}

int n,m;
int a[N];

int main(){
  freopen("QAQ_bipartite_one.in","r",stdin);
  freopen("QAQ_bipartite_one.out","w",stdout);
  scanf("%d",&n); Init(n);
  int L=0; m=1;
  while (m<=(n<<1)) m<<=1,L++;
  for (int i=1;i<m;i++) R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
  Pre(m);
  for (int i=0;i<=n;i++)
    a[i]=Inv(fac[i]*Pow(SQRT,(ll)i*i%(P-1))%P);
  FFT(m,a,1);
  for (int i=0;i<m;i++) a[i]=(ll)a[i]*a[i]%P;
  FFT(m,a,0);
  printf("%d\n",(ll)a[n]*fac[n]%P*Pow(SQRT,(ll)n*n%(P-1))%P);
  return 0;
}
QAQ_bipartite_two

设上一题的也就是有色的指数生成函数是 F(x) ,这题的无色的指数生成函数为 G(x) ,无色的强制必须连通的指数生成函数是 H(x) ,那么

G=eH

F=i=02iHii!=e2H

因为 k 个联通块染色会有2k

所以 F=G2 直接多项式开根

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;

const int P=998244353;
const int G=3;
const int SQRT=116195171;
const int INV=(P+1)>>1;
const int N=600005;

inline ll Pow(ll a,int b){
  ll ret=1; for (;b;b>>=1,a=a*a%P) if (b&1) ret=ret*a%P; return ret;
}
inline int Root(int a){
  if (a==1) return 1;
}
inline ll Inv(ll a){
  return Pow(a,P-2);
}
ll fac[N];
inline void Init(int n){
  fac[0]=1; for (int i=1;i<=n;i++) fac[i]=fac[i-1]*i%P;
}


int num;
int w[2][N];
inline void Pre(int m){
  num=m;
  int g=Pow(G,(P-1)/m);
  w[0][0]=w[1][0]=1;
  for (int i=1;i<num;i++) w[1][i]=(ll)w[1][i-1]*g%P;
  for (int i=1;i<num;i++) w[0][i]=w[1][num-i];
}

int R[N];

inline void FFT(int *a,int n,int r){
  for (int i=0;i<n;i++) if (i<R[i]) swap(a[i],a[R[i]]);
  for (int i=1;i<n;i<<=1)
    for (int j=0;j<n;j+=(i<<1))
      for (int k=0;k<i;k++){
    int x=a[j+k],y=(ll)a[j+k+i]*w[r][num/(i<<1)*k]%P;
    a[j+k]=(x+y)%P; a[j+i+k]=(x+P-y)%P;
      }
  if (!r) for (int i=0,inv=Pow(n,P-2);i<n;i++) a[i]=(ll)a[i]*inv%P;
}


inline void GetInv(int *a,int *b,int n){
  static int tmp[N];
  if (n==1) return void(b[0]=Inv(a[0]));
  GetInv(a,b,n>>1);
  for (int i=0;i<n;i++) tmp[i]=a[i],tmp[n+i]=0;
  int L=0; while (!(n>>L&1)) L++;
  for (int i=1;i<(n<<1);i++) R[i]=(R[i>>1]>>1)|((i&1)<<L);
  FFT(tmp,n<<1,1); FFT(b,n<<1,1);
  for (int i=0;i<(n<<1);i++)
    tmp[i]=(ll)b[i]*(2+P-(ll)tmp[i]*b[i]%P)%P;
  FFT(tmp,n<<1,0);
  for (int i=0;i<n;i++) b[i]=tmp[i],b[n+i]=0;
}
const int INV2=(P+1)/2;
inline void GetRoot(int *a,int *b,int n){
  static int tmp[N],invb[N];
  if (n==1) return void(b[0]=Root(a[0]));
  GetRoot(a,b,n>>1);
  memset(invb,0,sizeof(int)*n); GetInv(b,invb,n);
  int L=0; while (!(n>>L&1)) L++;
  for (int i=1;i<(n<<1);i++) R[i]=(R[i>>1]>>1)|((i&1)<<L);
  for (int i=0;i<n;i++) tmp[i]=a[i],tmp[n+i]=0;
  FFT(tmp,n<<1,1); FFT(b,n<<1,1); FFT(invb,n<<1,1);
  for (int i=0;i<(n<<1);i++)
    tmp[i]=(ll)((ll)b[i]*b[i]+tmp[i])%P*invb[i]%P*INV2%P;
  FFT(tmp,n<<1,0);
  for (int i=0;i<n;i++) b[i]=tmp[i],b[n+i]=0;
}

int n,m;
int a[N],b[N];
ll pw[N];

int main(){
  freopen("QAQ_bipartite_two.in","r",stdin);
  freopen("QAQ_bipartite_two.out","w",stdout);
  scanf("%d",&n); Init(n);
  int L=0; m=1;
  while (m<=(n<<1)) m<<=1,L++;
  for (int i=1;i<m;i++) R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
  Pre(m<<1);
  for (int i=0;i<=n;i++)
    a[i]=Inv(fac[i]*(pw[i]=Pow(SQRT,(ll)i*i%(P-1)))%P);
  FFT(a,m,1);
  for (int i=0;i<m;i++) a[i]=(ll)a[i]*a[i]%P;
  FFT(a,m,0);
  for (int i=0;i<=n;i++) a[i]=a[i]*pw[i]%P;
  for (int i=n+1;i<m;i++) a[i]=0;
  m=1; while (m<=n) m<<=1;
  GetRoot(a,b,m);
  printf("%d",(ll)b[n]*fac[n]%P);
  return 0;
}
QAQ_bipartite_thr

F=e2H 多项式ln

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long ll;

const int P=998244353;
const int G=3;
const int SQRT=116195171;
const int INV2=(P+1)>>1;
const int N=600005;

inline ll Pow(ll a,int b){
  ll ret=1; for (;b;b>>=1,a=a*a%P) if (b&1) ret=ret*a%P; return ret;
}
inline int Root(int a){
  if (a==1) return 1;
}
inline ll Inv(ll a){
  return Pow(a,P-2);
}
ll fac[N],inv[N];
inline void Init(int n){
  fac[0]=1; for (int i=1;i<=n;i++) fac[i]=fac[i-1]*i%P;
  inv[1]=1; for (int i=2;i<=n;i++) inv[i]=(ll)(P-P/i)*inv[P%i]%P;
  inv[0]=1; for (int i=1;i<=n;i++) inv[i]=inv[i-1]*inv[i]%P;
}


int num;
int w[2][N];
inline void Pre(int m){
  num=m;
  int g=Pow(G,(P-1)/m);
  w[0][0]=w[1][0]=1;
  for (int i=1;i<num;i++) w[1][i]=(ll)w[1][i-1]*g%P;
  for (int i=1;i<num;i++) w[0][i]=w[1][num-i];
}

int R[N];

inline void FFT(int *a,int n,int r){
  for (int i=0;i<n;i++) if (i<R[i]) swap(a[i],a[R[i]]);
  for (int i=1;i<n;i<<=1)
    for (int j=0;j<n;j+=(i<<1))
      for (int k=0;k<i;k++){
    int x=a[j+k],y=(ll)a[j+k+i]*w[r][num/(i<<1)*k]%P;
    a[j+k]=(x+y)%P; a[j+i+k]=(x+P-y)%P;
      }
  if (!r) for (int i=0,inv=Pow(n,P-2);i<n;i++) a[i]=(ll)a[i]*inv%P;
}


inline void GetInv(int *a,int *b,int n){
  static int tmp[N];
  if (n==1) return void(b[0]=Inv(a[0]));
  GetInv(a,b,n>>1);
  for (int i=0;i<n;i++) tmp[i]=a[i],tmp[n+i]=0;
  int L=0; while (!(n>>L&1)) L++;
  for (int i=1;i<(n<<1);i++) R[i]=(R[i>>1]>>1)|((i&1)<<L);
  FFT(tmp,n<<1,1); FFT(b,n<<1,1);
  for (int i=0;i<(n<<1);i++)
    tmp[i]=(ll)b[i]*(2+P-(ll)tmp[i]*b[i]%P)%P;
  FFT(tmp,n<<1,0);
  for (int i=0;i<n;i++) b[i]=tmp[i],b[n+i]=0;
}

int n,m;
int a[N],b[N],c[N],f[N];
ll pw[N];

int main(){
  freopen("QAQ_bipartite_thr.in","r",stdin);
  freopen("QAQ_bipartite_thr.out","w",stdout);
  scanf("%d",&n); Init(n);
  int L=0; m=1;
  while (m<=(n<<1)) m<<=1,L++;
  for (int i=1;i<m;i++) R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
  Pre(m<<1);
  for (int i=0;i<=n;i++)
    a[i]=Inv(fac[i]*(pw[i]=Pow(SQRT,(ll)i*i%(P-1)))%P);
  FFT(a,m,1);
  for (int i=0;i<m;i++) a[i]=(ll)a[i]*a[i]%P;
  FFT(a,m,0);
  for (int i=0;i<=n+1;i++) f[i]=(ll)a[i]*pw[i]%P*fac[i]%P,a[i]=(ll)a[i]*pw[i]%P;
  for (int i=0;i<=n;i++) c[i]=f[i+1]*inv[i]%P;
  for (int i=n+1;i<=m;i++) a[i]=0;
  GetInv(a,b,m>>1);
  FFT(b,m,1); FFT(c,m,1);
  for (int i=0;i<m;i++) b[i]=(ll)c[i]*b[i]%P;
  FFT(b,m,0);
  printf("%d\n",(ll)b[n-1]*fac[n-1]%P*INV2%P);
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值