【POJ 3468】A Simple Problem with Integers【树状数组】

题目大意:

题目大意:

题目链接:http://poj.org/problem?id=3468
给出一个初始数列,有两种操作:

  • Q   x   y Q\ x\ y Q x y,输出这个数列 x x x y y y之间的数字和。
  • C   x   y   z C\ x\ y\ z C x y z,将这个数列的 x x x y y y之间的数加上 z z z

思路:

此题线段树也可做:https://blog.csdn.net/SSL_ZYC/article/details/81907648

树状数组本来只支持单点修改和单点查询。可是如果加上前缀和就有了区间修改的能力。那么应该怎样完成区间查询呢?
s u m sum sum数组为前缀和,那么由于 ∑ i = 1 x s u m [ i ] = a [ x ] \sum^{x}_{i=1}sum[i]=a[x] i=1xsum[i]=a[x],所以就有 ∑ i = 1 x a [ i ] = ∑ i = 1 x ∑ j = 1 i b [ j ] \sum^{x}_{i=1}a[i]=\sum^{x}_{i=1} \sum^{i}_{j=1}b[j] i=1xa[i]=i=1xj=1ib[j]
然后(摘自《算法竞赛进阶指南》):
∑ i = 1 x ∑ j = 1 i b [ j ] \sum^{x}_{i=1} \sum^{i}_{j=1}b[j] i=1xj=1ib[j] = ∑ i = 1 x ( x − i + 1 ) × b [ i ] =\sum^{x}_{i=1}(x-i+1)\times b[i] =i=1x(xi+1)×b[i] = ( x + 1 ) ∑ i = 1 x b [ i ] − ∑ i = 1 x i × b [ i ] =(x+1)\sum^{x}_{i=1}b[i]-\sum^{x}_{i=1}i\times b[i] =(x+1)i=1xb[i]i=1xi×b[i]
那么就维护两个树状数组,一个储存普通的 c [ i ] c[i] c[i],另一个储存 x × z x\times z x×z即可。


代码:

#include <cstdio>
#include <iostream>
#define ll long long
using namespace std;

int n,m,x,y;
ll sum[100001],c[2][100001],a[100001],z,ans;
char ch;

ll ask(int id,int x)
{
	ll _ans=0;
	for (;x;x-=x&-x) _ans+=c[id][x];
	return _ans;
}

void add(int id,int x,ll y)
{
	for (;x<=n;x+=x&-x) c[id][x]+=y;
}

int main()
{
	scanf("%d%d",&n,&m);
	for (int i=1;i<=n;i++)
	{
		scanf("%lld",&a[i]);
		sum[i]=sum[i-1]+a[i];
	}
	while (m--)
	{
		cin>>ch;
		if (ch=='Q')
		{
			scanf("%d%d",&x,&y);
			ans=sum[y]+(y+1)*ask(0,y)-ask(1,y);
			ans-=sum[x-1]+x*ask(0,x-1)-ask(1,x-1);
			cout<<ans<<endl;	
		}
		else
		{
			scanf("%d%d",&x,&y);
			scanf("%lld",&z);
			add(0,x,z);
			add(0,y+1,-z);
			add(1,x,(ll)x*z);
			add(1,y+1,-(ll)(y+1)*z);
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值