题目大意:
题目链接:
JZOJ:https://jzoj.net/senior/#main/show/1252
洛谷:https://www.luogu.org/problemnew/show/P5194
有 n n n个砝码,求使用这些砝码能测量不超过 m m m的最大重量是多少。
思路:
n
≤
40
n\leq 40
n≤40,很明显普通的搜索是过不了的。
可以考虑采用折半搜索。
把
40
40
40个砝码分成两半,搜索出两边各个能测量的价值,然后枚举其中一边的所有可以测量到的重量,将另外一边排序后二分,使得相加不超过
m
m
m且尽量大。在所有答案中取
m
i
n
min
min即可。
折半后每边搜索需
O
(
2
2
n
)
O(2^{\frac{2}{n}})
O(2n2),排序
O
(
n
l
o
g
n
)
O(n\ logn)
O(n logn),枚举+二分
O
(
n
l
o
g
n
)
O(n\ logn)
O(n logn),所以总的时间复杂度是
O
(
2
2
n
+
n
l
o
g
n
)
O(2^{\frac{2}{n}}+n\ logn)
O(2n2+n logn)。
代码:
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN=1100000;
int n,n1,m,x,a[50],ans,sum1,sum2,w1[MAXN],w2[MAXN];
void dfs1(int x,int s,int maxn)
{
if (s>m) return;
if (x>maxn)
{
w1[++sum1]=s; //求出所有可以达到的重量
return;
}
dfs1(x+1,s,maxn);
dfs1(x+1,s+a[x],maxn);
}
void dfs2(int x,int s,int maxn)
{
if (s>m) return;
if (x>maxn)
{
w2[++sum2]=s;
return;
}
dfs2(x+1,s,maxn);
dfs2(x+1,s+a[x],maxn);
}
int main()
{
scanf("%d%d",&n1,&m);
for (int i=1;i<=n1;i++)
{
scanf("%d",&x);
if (x<=m) a[++n]=x;
}
dfs1(1,0,n/2);
dfs2(n/2+1,0,n);
w2[++sum2]=2147483647;
sort(w2+1,w2+sum2+1);
for (int i=1;i<=sum1;i++)
{
x=upper_bound(w2+1,w2+sum2+1,m-w1[i])-w2; //二分
ans=max(ans,w1[i]+w2[x-1]);
}
printf("%d\n",ans);
return 0;
}