题目描述
约翰有一架用来称牛的体重的天平。与之配套的是 N N N ( 1 ≤ N ≤ 1000 1 \leq N \leq 1000 1≤N≤1000 )个已知质量的砝码(所有砝码质量的数值都在32位带符号整数范围内)。
每次称牛时,他都把某头奶牛安置在天平的某一边,然后往天平另一边加砝码,直到天平平衡,于是此时砝码的总质量就是牛的质量(约翰不能把砝码放到奶牛的那边,因为奶牛不喜欢称体重,每当约翰把砝码放到她的蹄子底下,她就会尝试把砝码踢到约翰脸上)。
天平能承受的物体的质量不是无限的,当天平某一边物体的质量大于 C C C ( 1 ≤ C ≤ 2 30 1 \leq C \leq 2^{30} 1≤C≤230)时,天平就会被损坏。砝码按照它们质量的大小被排成一行。并且,这一行中从第3个砝码开始,每个砝码的质量至少等于前面两个砝码(也就是质量比它小的砝码中质量最大的两个)的质量的和。
约翰想知道,用他所拥有的这些砝码以及这架天平,能称出的质量最大是多少。由于天平的最大承重能力为 C ,他不能把所有砝码都放到天平上。
现在约翰告诉你每个砝码的质量,以及天平能承受的最大质量,你的任务是选出一些砝码,使它们的质量和在不压坏天平的前提下是所有组合中最大的。
输入格式
第1行输入两个用空格隔开的正整数 N 和 C 。
第2到 N+1 行:每一行仅包含一个正整数,即某个砝码的质量。保证这些砝码的质量是一个不下降序列。
输出格式
输出一个正整数,表示用所给的砝码能称出的不压坏天平的最大质量。
输入输出样例
输入
3 15
1
10
20
输出
11
分析
- 注意“一行中从第3个砝码开始,每个砝码的质量至少等于前面两个砝码”这句话,根据斐波那契数列,n最多为47,而不是1000,搜索就可以解决
- 用前缀和加快搜索(见代码)
- 需注意DFS函数里几个语句的先后顺序,特别是
ans = max(ans,x);
要在最前面
AC的C++代码
#include <iostream>
#include <algorithm>
using namespace std;
long long n,c,ans=0;
long long w[1010],sum[1010];
//index是砝码编号 ,x是选出的砝码的和
void DFS(int index, long long x){
ans = max(ans,x);
if( index==0 )
return;
if(x + sum[index] < ans)//剪枝
return;
if( x+w[index] <= c )
DFS(index-1,x+w[index]);
DFS(index-1,x);
}
int main(){
cin>>n>>c;
for(int i=1; i <= n; i++){
cin>>w[i];
sum[i] = sum[i-1] + w[i];
}
DFS(n,0);
cout<<ans;
return 0;
}