题目背景
小a和uim来到雨林中探险。突然一阵北风吹来,一片乌云从北部天边急涌过来,还伴着一道道闪电,一阵阵雷声。刹那间,狂风大作,乌云布满了天空,紧接着豆大的雨点从天空中打落下来,只见前方出现了一个披头散发、青面獠牙的怪物,低沉着声音说:“呵呵,既然你们来到这,只能活下来一个!”。小a和他的小伙伴都惊呆了!
题目描述
瞬间,地面上出现了一个n*m的巨幅矩阵,矩阵的每个格子上有一坨0~k不等量的魔液。怪物各给了小a和uim一个魔瓶,说道,你们可以从矩阵的任一个格子开始,每次向右或向下走一步,从任一个格子结束。开始时小a用魔瓶吸收地面上的魔液,下一步由uim吸收,如此交替下去,并且要求最后一步必须由uim吸收。魔瓶只有k的容量,也就是说,如果装了k+1那么魔瓶会被清空成零,如果装了k+2就只剩下1,依次类推。怪物还说道,最后谁的魔瓶装的魔液多,谁就能活下来。小a和uim感情深厚,情同手足,怎能忍心让小伙伴离自己而去呢?沉默片刻,小a灵机一动,如果他俩的魔瓶中魔液一样多,不就都能活下来了吗?小a和他的小伙伴都笑呆了!
现在他想知道他们都能活下来有多少种方法。
输入输出格式
输入格式:
第一行,三个空格隔开的整数n,m,k
接下来n行,m列,表示矩阵每一个的魔液量。同一行的数字用空格隔开。
输出格式:
一个整数,表示方法数。由于可能很大,输出对1 000 000 007取余后的结果。
输入输出样例
输入样例#1:
2 2 3
1 1
1 1
输出样例#1:
4
【数据范围】
对于20%的数据,n,m<=10,k<=2
对于50%的数据,n,m<=100,k<=5
对于100%的数据,n,m<=800,1<=k<=15
题解
首先n和m都比较小,可以满足O(nmk)
可以设f[i][j][p][0/1]为走到(i,j),两人的魔液差为p,0表示当前是小a在这里吸,1表示是uim在这里吸
显然,状态转移方程为
f[i][j][p][0]=(f[i][j][p][0]+f[i-1][j][((p-a[i][j])%k+k)%k][1]+f[i][j-1][((p-a[i][j])%k+k)%k][1])%mo
f[i][j][p][1]=(f[i][j][p][1]+f[i-1][j][((p+a[i][j])%k+k)%k][l]+f[i][j-1][((p+a[i][j])%k+k)%k][l])%mo
O(nmk)得出f数组
O(nm)统计
代码
#include<cstdio>
#include<iostream>
using namespace std;
const int mo=1000000007;
int n,m,k,a[900][900],f[900][900][20][2];
int main()
{
scanf("%d%d%d",&n,&m,&k); k++;
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
{
scanf("%d",&a[i][j]);
f[i][j][a[i][j]%k][0]++;
}
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
for (int z=0;z<k;z++)
{
f[i][j][z][0]=(f[i][j][z][0]+f[i-1][j][((z-a[i][j])%k+k)%k][1]+f[i][j-1][((z-a[i][j])%k+k)%k][1])%mo;
f[i][j][z][1]=(f[i][j][z][1]+f[i-1][j][((z+a[i][j])%k+k)%k][0]+f[i][j-1][((z+a[i][j])%k+k)%k][0])%mo;
}
int ans=0;
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
ans=(ans+f[i][j][0][1])%mo;
printf("%d",ans);
return 0;
}