炮兵阵地
Description
司令部的将军们打算在NM的网格地图上部署他们的炮兵部队。一个NM的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。
Input
第一行包含两个由空格分割开的正整数,分别表示N和M;
接下来的N行,每一行含有连续的M个字符(‘P’或者‘H’),中间没有空格。按顺序表示地图中每一行的数据。N≤100;M≤10。
Output
仅在第一行包含一个整数K,表示最多能摆放的炮兵部队的数量。
Sample Input
5 4
PHPP
PPHH
PPPP
PHPP
PHHP
Sample Output
6
解题思路
这道题不就 《简 简 单 单》…个屁啊!我们用 f[i][j][k] 表示当前第 i 行的 j 状态和上一行的 k 状态。我们先枚举求出所有可行的状态,然后枚举这几个元素。若他们不冲突,我们就进行动态转移,方程如下:
f
[
i
]
[
j
]
[
k
]
=
m
a
x
(
f
[
i
]
[
j
]
[
k
]
,
f
[
i
−
1
]
[
k
]
[
l
]
+
s
u
m
[
j
]
)
f[i][j][k]=max(f[i][j][k],f[i-1][k][l]+sum[j])
f[i][j][k]=max(f[i][j][k],f[i−1][k][l]+sum[j])
那么程序我们就可以推出来了:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,m,map[110],q[1<<10],sum[1<<10],tot;
bool check(int x)
{
int s=0;
while(x)
{
if(s&&(x&1)) return 0;
if(x&1) s=3;
if(s) s--;
x>>=1;
}
return 1;
}
int count(int x)
{
int s=0;
while(x)
{
if(x&1)
s++;
x=x>>1;
}
return s;
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
char t;
cin>>t;
map[i]=(map[i]<<1)+(t=='H');
}
for(int S=0;S<(1<<m);S++)
if(check(S))
{
q[++tot]=S;
sum[tot]=count(S);
}
int f[110][tot+1][tot+1];
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++)
for(int j=1;j<=tot;j++)
if(!(q[j]&map[i]))
for(int k=1;k<=tot;k++)
if(!(q[k]&map[i-1])&&!(q[j]&q[k]))
for(int l=1;l<=tot;l++)
if(!(q[l]&map[i-2])&&!(q[j]&q[l])&&!(q[k]&q[l]))
f[i][j][k]=max(f[i][j][k],f[i-1][k][l]+sum[j]);
int ans=0;
for(int i=1;i<=tot;i++)
for(int j=1;j<=tot;j++)
ans=max(ans,f[n][i][j]);
cout<<ans<<endl;
}