假设有一个函数
T
(
n
)
=
a
T
(
n
/
b
)
+
f
(
n
)
T(n)=aT(n/b)+f(n)
T(n)=aT(n/b)+f(n)
(
f
(
n
)
f(n)
f(n)大概率都是一个常量)
设 r e s u l t result result为此函数的时间复杂度
那么如果
f
(
n
)
<
n
l
o
g
b
a
f(n)<nlog_ba
f(n)<nlogba
则
r
e
s
u
l
t
=
O
(
n
l
o
g
b
a
)
result=O(n^{log_ba})
result=O(nlogba)
如果
f
(
n
)
=
n
l
o
g
b
a
f(n)=nlog_ba
f(n)=nlogba
则
r
e
s
u
l
t
=
O
(
n
l
o
g
b
a
∗
l
o
g
k
+
1
n
)
result=O(n^{log_ba}*log^{k+1}n)
result=O(nlogba∗logk+1n)
如果
f
(
n
)
>
n
l
o
g
b
a
f(n)>nlog_ba
f(n)>nlogba
则
r
e
s
u
l
t
=
O
(
f
(
n
)
)
result=O(f(n))
result=O(f(n))