「学习笔记」初赛中的排序与主定理

排序

稳定性的含义:如果数组中存在两个不同位置元素 x = y x=y x=y,排完序后原来的 x , y x,y x,y的相对位置发生了改变,则称这种排序是不稳定的(发生无意义的变换).

排序算法最坏复杂度平均复杂度是否稳定
插入排序 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)稳定
选择排序 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)不稳定
冒泡排序 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2)稳定
快速排序 O ( n 2 ) O(n^2) O(n2) O ( n log ⁡ n ) O(n\log n) O(nlogn)不稳定
归并排序 O ( n log ⁡ n ) O(n\log n) O(nlogn) O ( n log ⁡ n ) O(n\log n) O(nlogn)稳定
堆排序 O ( n log ⁡ n ) O(n\log n) O(nlogn) O ( n log ⁡ n ) O(n\log n) O(nlogn)不稳定
基数排序 O ( d ( r + n ) ) O(d(r+n)) O(d(r+n)) O ( d ( r + n ) ) O(d(r+n)) O(d(r+n))稳定

基数排序中的 r r r表示基数, d d d表示位数.

R a d i x    S o r t Radix\; Sort RadixSort

#include <cstdio>

const int MAXN = 1e5 + 10;
const int r = 13;

int n, cnt[r], a[MAXN], t[MAXN];

void radix_sort() {
	int maxa = 0;
	for(int i = 1; i <= n; i ++)
		if(maxa < a[i]) maxa = a[i];
	int d = 1, w;
	for(; d <= maxa; d *= r) {
		for(int i = 0; i < r; i ++) cnt[i] = 0;
		for(int i = 1; i <= n; i ++) {
			w = a[i] / d % r;
			++ cnt[w];
		}
		for(int i = 1; i < r; i ++) cnt[i] += cnt[i - 1];
		for(int i = n; i; i --) {
			w = a[i] / d % r;
			t[cnt[w] --] = a[i];
		}
		for(int i = 1; i <= n; i ++) a[i] = t[i];
	}
}

int main() {
	scanf("%d", &n);
	for(int i = 1; i <= n; i ++)
		scanf("%d", &a[i]);
	radix_sort();
	for(int i = 1; i <= n; i ++)	
		printf("%d%c", a[i], " \n"[i == n]);
	return 0;
}

Q u i c k &ThickSpace; S o r t Quick \; Sort QuickSort

#include <cstdio>

const int MAXN = 1e5 + 10;

void swap(int & a, int & b) {
	if(a ^ b) a ^= b ^= a ^= b;
}

int n, a[MAXN];

void qsort(int l, int r) {
	if(l >= r) return ;
	int mid = a[l + r >> 1], i = l, j = r;
	do {
		for(; a[i] < mid; ++ i) ;
		for(; a[j] > mid; -- j) ;
		if(i <= j) swap(a[i ++], a[j --]);
	} while(i <= j) ;
	qsort(l, j);
	qsort(i, r);
}

int main() {
	scanf("%d", &n);
	for(int i = 1; i <= n; i ++)
		scanf("%d", &a[i]);
	qsort(1, n);
	for(int i = 1; i <= n; i ++)	
		printf("%d%c", a[i], " \n"[i == n]);
	return 0;
}

主定理

这里大概介绍一下主定理,符号和语言可能不严谨.

如果某算法的计算时间可以用一下递推式表示: T ( n ) = a T ( n b ) + f ( n ) T(n)=aT(\frac{n}{b})+f(n) T(n)=aT(bn)+f(n)

多项式大于感性理解为:它们的商大于一个多项式。即 ∃ &ThickSpace; e &gt; 0 , e ∈ R ∃\;e&gt;0,e\in R e>0,eR,使得 f ( x ) &gt; g ( x ) ∗ n e f(x)&gt;g(x)*n^e f(x)>g(x)ne

例如 n 1.1 &gt; n n^{1.1}&gt;n n1.1>n,但是 n ̸ &lt; n log ⁡ n n \not &lt; n \log n n̸<nlogn.

(1) 若 f ( n ) &lt; n log ⁡ b a f(n) &lt; n^{\log_b^a} f(n)<nlogba,则 T ( n ) = O ( n log ⁡ b a ) T(n)=O(n^{\log_b^a}) T(n)=O(nlogba)

(2) 若 f ( n ) = n log ⁡ b a f(n) = n^{\log_b^a} f(n)=nlogba,则 T ( n ) = O ( n log ⁡ b a log ⁡ n ) T(n)=O(n^{\log_b^a}\log n) T(n)=O(nlogbalogn)

(3) 若 f ( n ) &gt; n log ⁡ b a f(n) &gt; n^{\log_b^a} f(n)>nlogba,则 T ( n ) = O ( f ( n ) ) T(n)=O(f(n)) T(n)=O(f(n))

例1(NOIP 2017 提高组初赛): T ( N ) = 2 T ( N 2 ) + N log ⁡ N T(N)=2T(\frac{N}{2})+N \log N T(N)=2T(2N)+NlogN,则时间复杂度为:

f ( n ) = N log ⁡ N f(n)=N \log N f(n)=NlogN N log ⁡ b a = N N^{\log_b^a}=N Nlogba=N N log ⁡ N = N N \log N=N NlogN=N,因此 T ( N ) = O ( N log ⁡ 2 N ) T(N)=O(N\log^2 N) T(N)=O(Nlog2N).

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值